Theoretical aspects of cyber-physical systems.
Event
IA3 2017
Seventh Workshop on Irregular Applications: Architectures and Algorithms (IA3 2017) Irregular applications occur in many subject matters. While inherently parallel, they exhibit highly variable execution performance at a local level due to unpredictable memory access patterns and/or network transfers, divergent control structures, and data imbalances.
Submitted by Anonymous on September 18th, 2017
Event
CITE 2017
The 8th International Conference on Information Technology in Education (CITE 2017) Special tracks within the Conference on Creative Education (CCE 2017). The main objective of CITE 2017 is to provide a platform for researchers, engineers and academicians from all over the world to present their research results and development activities on Information Technology in Education.
Submitted by Anonymous on September 18th, 2017
This proposal will establish a framework for developing distributed Cyber-Physical Systems operating in a Networked Control Systems (NCS) environment. Specific attention is focused on an application where the computational, and communication challenges are unique due to the sheer size of the physical system, and communications between system elements include potential for significant losses and delays. An example of this is the power grid which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources. Although, much has been done to model and analyze the impact of data dropouts and delay in NCS at a theoretical level, their impact on the behavior of cyber physical systems has received little attention. As a result much of the past research done on the `smart grid' has oversimplified the `physical' portion of the model, thereby overlooking key computational challenges lying at the heart of the dimensionality of the model and the heterogeneity in the dynamics of the grid. A clear gap has remained in understanding the implications of uncertainties in NCS (e.g. bandwidth limitations, packet dropout, packet disorientation, latency, signal loss, etc.) cross-coupled with the uncertainties in a large power grid with wind farms (e.g. variability in wind power, fault and nonlinearity, change in topology etc.) on the reliable operation of the grid. To address these challenges, this project will, for the first time, develop a modeling framework for discovering hitherto unknown interactions through co-simulation of NCS, distributed computing, and a large power grid included distributed wind generation resources. Most importantly, it addresses challenges in distributed computation through frequency domain abstractions and proposes two novel techniques in grid stabilization during packet dropout. The broader impact lies in providing deeper understanding of the impact of delays and dropouts in the Smart Grid. This will enable a better utilization of energy transmission assets and improve integration of renewable energy sources. The project will facilitate participation of women in STEM disciplines, and will include outreach with local Native American tribal community colleges This project will develop fundamental understanding of impact of network delays and drops using an approach that is applicable to a variety of CPS. It will enable transformative Wide-Areas Measurement Systems research for the smart grid through modeling adequacy studies of a representative sub-transient model of the grid along with the representation of packet drop in the communication network by a Gilbert model. Most importantly, fundamental concepts of frequency domain abstraction including balanced truncation and optimal Hankel-norm approximation are proposed to significantly reduce the burden of distributed computing. Finally, a novel `reduced copy' approach and a `modified Kalman filtering' approach are proposed to address the problem of grid stabilization using wind farm controls when packet drop is encountered.
Off
Pennsylvania State University
-
National Science Foundation
Nilanjan Ray Chaudhuri Submitted by Nilanjan Ray Chaudhuri on September 11th, 2017
The objective of this research is to design a semi-automated, efficient, and secure emergency response system to reduce the time it takes emergency vehicles to reach their destinations, while increasing the safety of non-emergency vehicles and emergency vehicles alike. Providing route and maneuver guidance to emergency vehicles and non-emergency vehicles will make emergency travel safer and enable police and other first responders to reach and transport those in need, in less time. This should reduce the number of crashes involving emergency vehicles and associated litigation costs while improving medical outcomes, reducing property damage, and instilling greater public confidence in emergency services. At the same time, non-emergency vehicles will also be offered increased safety and, with the reduction of long delays attributed to emergency vehicles, experience reduced incident-related travel time, which will increase productivity and quality of life for drivers. Incorporating connected vehicles into the emergency response system will also provide synergistic opportunities for non-emergency vehicles, including live updates on accident sites, areas to avoid, and information on emergency routes that can be incorporated into navigation software so drivers can avoid potential delays. While the proposed system will naturally advance the quality of transportation in smart cities, it will also provide a platform for future techniques to build upon. For example, the proposed system could be connected with emergency care facilities to balance the load of emergency patients at hospitals, and act as a catalyst toward the realization of a fully-automated emergency response system. New courses and course modules will be developed to recruit and better prepare a future workforce that is well versed in multi-disciplinary collaborations. Video demos and a testbed will be used to showcase the research to the public. The key research component will be the design of an emergency response system that (1) dynamically determines EV routes, (2) coordinates actions by non-emergency vehicles using connected vehicle technology to efficiently and effectively clear paths for emergency vehicles, (3) is able to adapt to uncertain traffic and network conditions, and (4) is difficult to abuse or compromise. The project will result in (1) algorithms that dynamically select EV routes based on uncertain or limited traffic data, (2) emergency protocols that exploit connected vehicle technology to facilitate emergency vehicles maneuvers, (3) an automation module to assist with decision making and maneuvers, and (4) an infrastructure and vehicle hardening framework that prevents cyber abuse. Experiments will be performed on a testbed and a real test track to validate the proposed research.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
Submitted by Tam Chantem on September 11th, 2017
This project focuses on tackling the security and privacy of Cyber-Physical Systems (CPS) by integrating the theory and best practices from the information security community as well as practical approaches from the control theory community. The first part of the project focuses on security and protection of cyber-physical critical infrastructures such as the power grid, water distribution networks, and transportation networks against computer attacks in order to prevent disruptions that may cause loss of service, infrastructure damage or even loss of life. The second part of the project focuses on privacy of CPS and proposes new algorithms to deal with the unprecedented levels of data collection granularity of physical human activity. The work in these two parts focuses on the integration of practical control theory concepts into computer security solutions. In particular, in the last decade, the control theory community has proposed fundamental advances in CPS security; in parallel, the computer security community has also achieved significant advances in practical implementation aspects for CPS security and privacy. While both of these fields have made significant progress independently, there is still a large language and conceptual barrier between the two fields, and as a result, computer security experts have developed a parallel and independent research agenda from control theory researchers. In order to design future CPS security and privacy mechanisms, the two communities need to come closer together and leverage the insights that each has developed. This project attempts to facilitate the integration of these two communities by leveraging the physical properties of the system under control in two research problems: (1) Physics-based CPS security; and (2) Physics-based CPS privacy. Physics-based CPS security leverages the time series from sensor and control signals to detect deviations from expected operation. This is a growing area of research in both security and control theory venues, although there are several open problems in this space. This proposal tackles some of these open problems including the definition of new evaluation metrics that capture the unique operational properties of control systems, the consistent evaluation of different proposals for models and anomaly detection tests, and the development of new industrial control protocol parsers. Physics-based CPS privacy focuses on how to guide the implementation of general privacy recommendations like the Fair Information Practice principles into cyber-physical systems, leveraging the fact that these physical systems often have an objective to achieve, and this objective depends on the data-handling policies of the operator. The project focuses on investigating the trade-off between privacy and control performance and developing tools to guide how data minimization, data delays, and data retention should be implemented.
Off
University of Texas at Dallas
-
National Science Foundation
Submitted by Alvaro Cardenas on September 11th, 2017
This project pursues a smart cyber-physical approach for improving the electric rail infrastructure in the United States and other nations. We will develop a distributed coordination of pricing and energy utilization even while ensuring end-to-end time schedule constraints for the overall rail infrastructure. We will ensure this distributed coordination through transactive control, a judicious design of dynamic pricing in a cyber-physical system that utilizes the computational and communication infrastructure and accommodates the physical constraints of the underlying train service. The project is synergistic in that it builds upon the expertise of the electric-train infrastructure and coordination at UIC and that of transactive control on the part of MIT. We will validate the approach through collaboration with engineers in the Southeastern Pennsylvania Transport Authority, where significant modernization efforts are underway to improve their electric-train system. The project also involves strong international collaboration which will also enable validation of the technologies. This project will formulate a multi-scale transitive control strategy for minimization of price and energy utilization in a geographically-dispersed railway grid with broader implications for evolving smart and micro grids. The transactions evolve over different temporal scales ranging from day-ahead offline transaction between the power grid and the railway system operators yielding price optimality to real-time optimal transaction among the trains or the area control centers (ACC). All of these transactions are carried out while meeting system constraints ranging from end-to-end time-scheduling, power-quality, and capacity. Our research focuses on fundamental issues encompassing integration of information, control, and power, including event-driven packet arrival from source to destination nodes while ensuring hard relative deadlines and optimal sampling and sensing; and formulation of network concave utility function for allocating finite communication-network capacity among control loops. The project develops optimization approaches that can be similarly applied across multiple application domains.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Submitted by Anuradha Annaswamy on August 25th, 2017
This project considers the pragmatic challenge of broadening the reach and general accessibility of cyber-physical system (CPS) analysis. It capitalizes on logical foundations for cyber-physical systems to study automated analysis for CPS without sacrificing correctness of the analysis results. While the complexities of CPSs can be quite demanding, there is a considerable pragmatic difference between rigorous reasoning techniques that are available to verification experts compared to techniques that provide a vast amount of automation support to become more accessible for novices and more productive for experts. This project focuses on finding invariants, which convey crucial insights about quantities or relationships, such as minimum safety distances, that do not change while the CPS drives or flies. Cyber-physical systems such as self-driving cars, advanced computerized car safety technology, and drones have considerable potential to change the world for the better. Their designs face intensive safety requirements, however, and feature increasingly complex behaviors. The advanced but correct automation of CPS analysis technology developed in this project is crucial to broaden the reach of trustworthy verification and validation results. In the long run, there is a chance that this technology will fundamentally change the way that CPS are engineered by enabling CPS engineers to have increasingly comprehensive safety analysis tools at their fingertips. As a demonstration with considerable impact potential, this project studies safe control functionalities for quadrotors. Quadcopters are a popular choice for realizing many applications, but their safety is a nontrivial challenge. Not every company or grass-roots effort will have the capacity to conduct a full verification and validation effort. That is why a set of baseline functionalities that have been preverified are expected to be a helpful basis for such designs. The results of this project, including CPS models, controllers, proofs, and tools, will be made available on the KeYmaera X web page: http://keymaeraX.org/
Off
Carnegie-Mellon University
-
National Science Foundation
Andre Platzer Submitted by Andre Platzer on August 25th, 2017
Event
IEA/AIE 2018
The 31st International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems Scope IEA/AIE 2018 continues the tradition of emphasizing applications of applied intelligent systems to solve real-life problems in all areas including engineering, science, industry, automation & robotics, business & finance, medicine and biomedicine, bioinformatics, cyberspace, and human-machine interactions.
Submitted by Anonymous on August 23rd, 2017
Event
EOOLT 2017
December 1, 2017 | Munich, Germany Many engineers rely heavily on model-based design and control of complex cyber-physical systems. Of paramount importance is the ability to capture all central aspects of such systems in the models, including the physical behavior of the system components and the architecture description of its software and hardware.
Submitted by Anonymous on August 23rd, 2017
Event
DATE 2018
The 21st DATE conference and exhibition is the main European event bringing together designers and design automation users, researchers and vendors, as well as specialists in the hardware and software design, test and manufacturing of electronic circuits and systems. DATE puts strong emphasis on both technology and systems, covering ICs/SoCs, reconfigurable hardware and embedded systems, and embedded software.
Submitted by Anonymous on August 23rd, 2017
Subscribe to Foundations