Design, development and manufacture of motor vehicles, towed vehicles, motorcycles and mopeds.
In the recent past the term "Smart Cities" was introduced to mainly characterize the integration into our daily lives of the latest advancements in technology and information. Although there is no standardized definition of Smart Cities, what is certain is that it touches upon many different domains that affect a city's physical and social capital. Smart cities are intertwined with traffic control systems that use advanced infrastructures to mitigate congestion and improve safety. Traffic control management strategies have been largely focused on improving vehicular traffic flows on highways and freeways but arterials have not been used properly and pedestrians are mostly ignored. This work proposes to introduce a novel hierarchical adaptive controls paradigm to urban network traffic control that will adapt to changing movement and interaction behaviors from multiple entities (vehicles, public transport modes, bicyclists, and pedestrians). Such a paradigm will leverage several key ideas of cyber-physical systems to rapidly and automatically pin-point and respond to urban arterial congestion thereby improving travel time and reliability for all modes. Safety will also be improved since advanced warnings actuated by the proposed cyber-physical system will alert drivers to congested areas thereby allowing them to avoid these areas, or to adapt their driving habits. Such findings have a tangible effect on the well-being, productivity, and health of the traveling public. The primary goal is to create a Cyber-Control Network (CCN) that will integrate seamlessly across heterogeneous sensory data in order to create effective control schemes and actuation sequences. Accordingly, this project introduces a Cyber-Physical architecture that will then integrate: (i) a sub-network of heterogeneous sensors, (ii) a decision control substrate, and (iii) a sub-actuation network that carries out the decisions of the control substrate (traffic control signals, changeable message signs). This is a major departure from more prevalent centralized Supervisory Control And Data Acquisition (SCADA), in that the CCN will use a hierarchical architecture that will dynamically instantiate the sub-networks together to respond rapidly to changing cyber-physical interactions. Such an approach allows the cyber-physical system to adapt in real-time to salient traffic events occurring at different scales of time and space. The work will consequently introduce a ControlWare module to realize such dynamic sub-network reconfiguration and provide decision signal outputs to the actuation network. A secondary, complementary goal is to develop a heterogeneous sensor network to reliably and accurately monitor and identify salient arterial traffic events. Other impacts of the project include the integration of the activities with practitioners (e.g., traffic engineers), annual workshops/tutorials, and outreach to K-12 institutions.
Off
University of Maryland College Park
-
National Science Foundation
Brian Scott
John Hourdos
Stephen Guy
Mihailo Jovanovic
Submitted by Nikolaos Papanikolopoulos on September 23rd, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Stanford University
-
National Science Foundation
Submitted by Ram Rajagopal on September 22nd, 2016
Event
JRWRTC 2016
10th Junior Researcher Workshop on Real-Time Computing (JRWRTC 2016) in conjunction with the 24th International Conference on Real-Time and Network Systems (RTNS 2016) Brest, France | October 19-21, 2016 | http://rtns16.univ-brest.fr/
Submitted by Anonymous on July 6th, 2016
Event
CyPhy 2016
Call for Papers Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016) Held in conjunction with ESWEEK 2016 October 6 2016 | Pittsburgh, PA, USA | http://www.cyphy.org/
Submitted by Anonymous on June 10th, 2016
Event
RTNS 2016
 24th International Conference on Real-Time Networks and Systems (RTNS) CONFERENCE RTNS is a friendly conference with a great sense of community that presents excellent opportunities for collaboration. Original unpublished papers on all aspects of real-time systems and networks are welcome. The proceedings are published by the ACM ICPS (approval pending). RTNS covers a wide-spectrum of topics in real-time and embedded systems, including, but not limited to:
Submitted by Anonymous on May 9th, 2016
Event
MSWiM 2016
19th ACM*/IEEE*  19th Annual International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2016) *Pending Upon Approval
Submitted by Anonymous on April 27th, 2016
Event
EUC 2016
14th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2016)  Paris, France | August 24-26, 2016 | http://euc2016.conferences-events.org/ In conjunction with DCABES 2016 and CSE 2016 by MINES ParisTech - Research University, CentraleSupelec and UFC/FEMTO-ST Institute Introduction
Submitted by Anonymous on April 26th, 2016
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions. This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever. To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
Off
Georgia Institute of Technology
-
National Science Foundation
Karen Feigh
Submitted by Panagiotis Tsiotras on April 25th, 2016
The objective of this work is to generate new fundamental science that enables the operation of cyber-physical systems through complex environments. Predicting how a system will behave in the future requires more computing power if that system is complex. Navigating through environments with many obstacles could require significant computing time, which may delay the issue of decisions that have to be made by the on-board algorithms. Fortunately, systems do not always need the most accurate model to predict their behavior. This project develops new theory for deciding between the best model to use when making a decision in real time. The approach involves switching between different predictive models of the system, depending on the computational burden of the associated controller, and the accuracy that the predictive model provides. These tools will pave the way for more kinds of aircraft to navigate closely and safely with one another through the National Air Space (NAS), including Unmanned Air Systems (UAS). The results from this project will enable more accurate and faster trajectory synthesis for controllers with nonlinear plants, or nonlinear constraints that encode obstacles. The approach utilizes hybrid control to switch between models whose accuracy is normalized by their computational burden of predictive control methods. This synergistic approach enables computationally-aware cyber-physical systems (CPSs), in which model accuracy can be jointly considered with computational requirements. The project advances the knowledge on modeling, analysis, and design of CPSs that utilize predictive methods for trajectory synthesis under constraints in real-time cyber-physical systems. The results will include methods for the design of algorithms that adapt to the computational limitations of autonomous and semi-autonomous systems while satisfying stringent timing and safety requirements. With these methods come new tools to account for computational capabilities in real-time, and new hybrid feedback algorithms and prediction schemes that exploit computational capabilities to arrive at more accurate predictions within the time constraints. The algorithms will be modeled in terms of hybrid dynamical systems, to guarantee dynamical properties of interest. The problem space will draw from models of UAS in the NAS.
Off
University of Arizona
-
National Science Foundation
Jonathan Sprinkle Submitted by Jonathan Sprinkle on April 25th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Kang Shin Submitted by Kang Shin on April 25th, 2016
Subscribe to Automotive