Design, development and manufacture of motor vehicles, towed vehicles, motorcycles and mopeds.
The objective of this research is to design a semi-automated, efficient, and secure emergency response system to reduce the time it takes emergency vehicles to reach their destinations, while increasing the safety of non-emergency vehicles and emergency vehicles alike. Providing route and maneuver guidance to emergency vehicles and non-emergency vehicles will make emergency travel safer and enable police and other first responders to reach and transport those in need, in less time. This should reduce the number of crashes involving emergency vehicles and associated litigation costs while improving medical outcomes, reducing property damage, and instilling greater public confidence in emergency services. At the same time, non-emergency vehicles will also be offered increased safety and, with the reduction of long delays attributed to emergency vehicles, experience reduced incident-related travel time, which will increase productivity and quality of life for drivers. Incorporating connected vehicles into the emergency response system will also provide synergistic opportunities for non-emergency vehicles, including live updates on accident sites, areas to avoid, and information on emergency routes that can be incorporated into navigation software so drivers can avoid potential delays. While the proposed system will naturally advance the quality of transportation in smart cities, it will also provide a platform for future techniques to build upon. For example, the proposed system could be connected with emergency care facilities to balance the load of emergency patients at hospitals, and act as a catalyst toward the realization of a fully-automated emergency response system. New courses and course modules will be developed to recruit and better prepare a future workforce that is well versed in multi-disciplinary collaborations. Video demos and a testbed will be used to showcase the research to the public. The key research component will be the design of an emergency response system that (1) dynamically determines EV routes, (2) coordinates actions by non-emergency vehicles using connected vehicle technology to efficiently and effectively clear paths for emergency vehicles, (3) is able to adapt to uncertain traffic and network conditions, and (4) is difficult to abuse or compromise. The project will result in (1) algorithms that dynamically select EV routes based on uncertain or limited traffic data, (2) emergency protocols that exploit connected vehicle technology to facilitate emergency vehicles maneuvers, (3) an automation module to assist with decision making and maneuvers, and (4) an infrastructure and vehicle hardening framework that prevents cyber abuse. Experiments will be performed on a testbed and a real test track to validate the proposed research.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
Submitted by Pamela Murray-Tuite on April 6th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Pennsylvania
-
National Science Foundation
Nadia Heninger
Andreas Haeberlen
Insup Lee Submitted by Insup Lee on April 5th, 2016
During the last decade, we have witnessed a rapid penetration of autonomous systems technology into aerial, road, underwater, and sea vehicles. The autonomy assumed by these vehicles holds the potential to increase performance significantly, for instance, by reducing delays and increasing capacity, while enhancing safety, in a number of transportation systems. However, to exploit the full potential of these autonomy-enabled transportation systems, we must rethink transportation networks and control algorithms that coordinate autonomous vehicles operating on such networks. This project focuses on the design and operation of autonomy-enabled transportation networks that provide provable guarantees on achieving high performance and maintaining safety at all times. The foundational problems arising in this domain involve taking into account the physics governing the vehicles in order to coordinate them using cyber means. This research effort aims to advance the science of cyber-physical systems by following a unique and radical approach, drawing inspiration and techniques from non-equilibrium statistical mechanics and self-organizing systems, and blending this inspiration with the foundational tools of queueing theory, control theory, and optimization. This approach may allow orders of magnitude improvement in the servicing capabilities of various transportation networks for moving goods or people. The applications include the automation of warehouses, factory floors, sea ports, aircraft carrier decks, transportation networks involving driverless cars, drone-enabled delivery networks, air traffic management, and military logistics networks. The project also aims to start a new wave of classes and tutorials that will create trained engineers and a research community in the area of safe and efficient transportation networks enabled by autonomous cyber-physical systems.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Submitted by Sertac Karaman on April 5th, 2016
Inherent vulnerabilities of information and communication technology systems to cyber-attacks (e.g., malware) impose significant security risks to Cyber-Physical Systems (CPS). This is evidenced by a number of recent accidents. Noticeably, current distributed control of CPS is not really attack-resilient (ensuring task completion despite attacks). Although provable resilience would significantly lift the trustworthiness of CPS, existing defenses are rather ad-hoc and mainly focus on attack detection. In addition, while network attacks have been extensively studied, resilient-to-malware distributed control has been rarely investigated. This project aims to bridge the gap. It aims to investigate provably correct distributed attack-resilient control of CPS. The project will focus on a representative class of CPS, namely unmanned-vehicle-operator networks, and its four main research thrusts are: (1) The development of a distributed attack-resilient control framework to ensure task completion of multiple vehicles despite network attacks and malware attacks, (2) The synthesis of novel distributed attack-resilient control algorithms to deal with network attacks, (3) The design of estimation algorithms to detect malware attacks on vehicles, and computationally efficient algorithms which allow clean vehicles to avoid the collision with the vehicles compromised by malware, and (4) The validation of the cost-effectiveness of the proposed distributed attack-resilient control framework via a principled systematic evaluation plan. The research findings profoundly impact CPS security of a variety of engineering disciplines beyond unmanned-vehicle-operator networks, including smart grid, smart buildings and intelligent transportation systems. The proposed research is interdisciplinary and involves interactions among security, control, distributed algorithms and robotics. This will lead to educational and training opportunities that cross traditional disciplinary boundaries for high-school, undergraduate and graduate students in STEM.
Off
Pennsylvania State University
-
National Science Foundation
Peng Liu
Submitted by Minghui Zhu on March 31st, 2016
Event
ViPES 2016
4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES'2016) The 4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES 2016) will be held at Samos Island, Greece on July 17th, 2016. ViPES 2016 is co-located with the International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). Virtual prototyping stands for the development of hardware/software systems without using a real hardware prototype, i.e.
Submitted by Anonymous on March 24th, 2016
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2016) The International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS) is the premier event in system-level design, modeling, analysis, and implementation of modern embedded and cyber-physical systems, from system-level specification and optimization down to system synthesis of multi-processor hardware/software implementations.
Submitted by Anonymous on March 8th, 2016
Event
RTN 2016
14th International Workshop on Real-Time Networks (RTN 2016) PRESENTATION The Real-Time Networks (RTN) is a satellite workshop of the 28th Euromicro Conference on Real-Time Systems (ECRTS 2016), the premier European venue for presenting research into the broad area of real-time and embedded systems. The RTN 2016 workshop is the fourteenth in the series of workshops that started at the 2002 ECRTS conference. No edition took however place in 2015.
Submitted by Anonymous on February 15th, 2016

The National Institute of Standards and Technology (NIST) launched the 2016 Global City Teams Challenge (GCTC; see http://www.nist.gov/cps/sagc.cfm) with a kickoff meeting on November 12-13, 2015, in Gaithersburg, MD. This meeting brought together city planners and representatives from technology companies, academic institutions, and non-profits with the aim of fostering teams that will contribute to an overall vision for Smart and Connected Communities (S&CC) - effectively integrating networked information systems, sensing and communication devices, data sources, decision-making, and physical infrastructure to transform communities by improving quality of life, environmental health, social well-being, educational achievement, or overall economic growth and stability.

NIST's GCTC builds upon the National Science Foundation's (NSF) longstanding investments in cyber-physical systems (CPS). NSF established the CPS program in 2008 to develop the principles, methodologies, and tools needed to deeply embed computational intelligence, communications, and control, along with new mechanisms for sensing, actuation, and adaptation, into physical systems. The NSF CPS program, which today includes the participation of the U.S. Department of Homeland Security, U.S. Department of Transportation, National Aeronautics and Space Administration, and National Institutes of Health, has funded a strong portfolio of projects that together have pushed the boundaries of fundamental knowledge and systems engineering in core science and technology areas needed to support an ever-growing set of application domains. CPS investments are enabling systems that are central to emerging S&CC infrastructure and services, including in areas such as intelligent transportation systems (ground, aviation, and maritime), building control and automation, advanced manufacturing (including cyber-manufacturing), healthcare and medical devices, and the burgeoning Internet of Things (IoT). Dependability, security, privacy, and safety continue to be central priorities for the program in pursuing the vision of a world in which CPS dramatically improve quality of life. Along the way, the CPS program has also nurtured a vibrant CPS research community.

With this Dear Colleague letter (DCL), NSF is announcing its intention to fund EArly-Concept Grants for Exploratory Research (EAGER) proposals to support NSF researchers participating in the NIST GCTC, with the goal of pursuing novel research on the effective integration of networked computing systems and physical devices that will have significant impact in meeting the challenges of Smart and Connected Communities. Researchers must be members of, or be seeking to establish, GCTC teams that build upon the results of previous or active NSF-funded projects, and must provide evidence of active team membership and participation as part of the submission. [Note that, while this DCL is aligned with NSF’s broader efforts in Smart and Connected Communities (see http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf15120), a key requirement for this DCL is active participation in a GCTC team.] Proposals should emphasize the fundamental research inherent to the real-world problems being addressed; the manner in which the proposed solutions will be adopted by one or more local communities; and the potential challenges with respect to both research and deployment. Successful proposals will quantify the magnitude of potential societal impacts; and will result in transformative, long-term benefits rather than incremental advances. Finally, proposals must address why the work is appropriate for EAGER funding (see details below), including what key risks will be mitigated to facilitate future high-reward advances and why the timing of the project will maximize the potential for success.

The deadline for submission of EAGERs is April 1, 2016, but earlier submissions are encouraged, and decisions will be made on a first-come, first-serve basis.

Submission of EAGER proposals will be via Fastlane or Grants.gov. EAGER submissions should follow the NSF's Grant Proposal Guide (GPG) II.D.2 (see http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg). (As noted in the GPG, EAGER is a funding mechanism for supporting exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches. This work may be considered especially "high-risk/high-reward," for example, in the sense that it involves radically different approaches, applies new expertise, or engages novel disciplinary or interdisciplinary perspectives.)

An investigator may be included in only one submission in response to this DCL; if more than one is submitted, only the first one will be considered.

For further information, please contact the cognizant CPS program directors:

  • David Corman, CISE/CNS/CPS, dcorman@nsf.gov
  • Kishan Baheti, ENG/ECCS/EPCN, rbaheti@nsf.gov
  • Sylvia Spengler, CISE/IIS/CPS, sspengle@nsf.gov
  • Gurdip Singh, CISE/CNS/CSR, gsingh@nsf.gov
General Announcement
Not in Slideshow
Submitted by Anonymous on February 12th, 2016
The 35th International Conference on Computer Safety, Reliability and Security (SAFECOMP2016) ABOUT SAFECOMP
Submitted by Anonymous on February 3rd, 2016
Event
SELPHYS 2016
Self-Awareness in Cyber-Physical Systems A CPS Week Workshop in frame of CPSWeek 2016 DESCRIPTION:
Submitted by Anonymous on January 29th, 2016
Subscribe to Automotive