Design, development and manufacture of motor vehicles, towed vehicles, motorcycles and mopeds.
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees.
Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
The goal of this research is to develop fundamental theory, efficient algorithms, and realistic experiments for the analysis and design of safety-critical cyber-physical transportation systems with human operators. The research focuses on preventing crashes between automobiles at road intersections, since these account for about 40% of overall vehicle crashes. Specifically, the main objective of this work is to design provably safe driver-assist systems that understand driver's intentions and provide warnings/overrides to prevent collisions. In order to pursue this goal, hybrid automata models for the driver-vehicles-intersection system, incorporating driver behavior and performance as an integral part, are derived from human-factors experiments. A partial order of these hybrid automata models is constructed, according to confidence levels on the model parameters. The driver-assist design problem is then formulated as a set of partially ordered hybrid differential games with imperfect information, in which games are ordered according to parameter confidence levels. The resulting designs are validated experimentally in a driving simulator and in large-scale computer simulations.
This research leverages the potential of embedded control and communication technologies to prevent crashes at traffic intersections, by enabling networks of smart vehicles to cooperate with each other, with the surrounding infrastructure, and with their drivers to make transportation safer, more enjoyable, and more efficient. The work is based on a collaboration among researchers in formal methods, autonomous control, and human factors who are studying realistic and provably correct warning/override algorithms that can be readily transitioned to production vehicles.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Paul Green on December 18th, 2015
Event
ECYPS’2016
4th EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems (ECYPS’2016)
ECYPS’2016 - the 4th EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems will be held in the scope of MECO’2016 - the 5th Mediterranean Conference on Embedded Computing. It is devoted to cyber-physical systems (CPS) for modern applications that usually require high-performance, low energy consumption, high safety, security and reliability.
Event
IEEE ISORC 2016
ISORC 2016
ISORC has become established as the leading event devoted to state-of-the-art research in the field of object/component/service-oriented real-time distributed computing (ORC) technology. In 2016, we have adopted a new theme, Real-Time Issues and Challenges for novel applications and systems: Medical devices, intelligent transportation systems, Industrial automation systems, Internet of Things and Smart Grids.
Event
DAC 2016
Design Automation Conference 2016
Austin Convention Center, Austin, Texas | June 5 - 9, 2016 | www.dac.com
Event
CREST 2016
CREST: 1st Workshop on Causal-based Reasoning for Embedded and Safety-Critical Systems Technologies
Satellite event of ETAPS 2016
Topic
Event
HiRES 2016
Call for Papers
4th Workshop on High-performance and Real-Time Embedded Systems (HiRES 2016)
To be held in conjunction with the 11th International Conference on High-Performance and Embedded Architectures and Compilers (HiPEAC 2016)
Goal of the Workshop
File
CFP_WFCS2016.pdf
Submitted by Amy Karns on September 18th, 2015
Event
CTS 2016
14th IFAC Symposium on Control in Transportation Systems (CTS 2016)
Considering your research in related areas, we kindly invite you to the 14th IFAC Symposium on Control in Transportation Systems (CTS 2016) that will take place in Istanbul, Turkey on 18-20 May, 2016. Considering its unique integration of historical, cultural and architectural masterpieces that reflect the meeting of Europe and Asia for many centuries, Istanbul, which is historically known as Byzantium and Constantinople, is specially chosen as the conference venue.
As self-driving cars are introduced into road networks, the overall safety and efficiency of the resulting traffic system must be established and guaranteed. Numerous critical software-related recalls of existing automotive systems indicate that current design practices are not yet up to this challenge. This project seeks to address this problem, by developing methods to analyze and coordinate networks of fully and partially self-driving vehicles that interact with conventional human-driven vehicles on roads. The outcomes of the research are expected to also contribute to the safety of other cyber-physical systems with scalable configurable hierarchical structures, by developing a mathematical framework and corresponding software tools that analyze the safety and reliability of a class of systems that combine physical, mechanical and biological components with purely computational ones.
The project research spans four technical areas: autonomous and human-controlled collaborative driving; scheduling computations over heterogeneous distributed computing systems; security and trust in V2X (Vehicle-to-Vehicle and Vehicle-to-Infrastructure) networks; and Verification & Validation of V2X systems through semi-virtual environments and scenarios. The integrating aspect of this research is the development of a distributed system calculus for Cyber-Physical Systems (CPS) that enables modeling, simulation and analysis of collaborative vehicular systems. The development of a comprehensive framework to model, analyze and test reconfiguration, hierarchical control, security and trust differentiates this research from previous attempts to address the same problem. Educational and outreach activities include integration of project research in undergraduate and graduate courses, and a summer camp at Ohio State University for high-school students through the Women in Engineering program.
Off
-
National Science Foundation
Georgios Fainekos
Submitted by Georgios Fainekos on August 27th, 2015