Applications of CPS technologies used in the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods.
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions. This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever. To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
Off
University of Southern California
-
National Science Foundation
Submitted by Laurent Itti on September 23rd, 2016
This project addresses urgent challenges in high confidence validation and verification of automotive vehicles due to on-going and anticipated introduction of advanced, connected and autonomous vehicles into mass production. Since such vehicles operate across both physical and cyber domains, faults can occur in traditional physical components, in cyber components (i.e., algorithms, processors, networks, etc.), or in both. Thus, advanced vehicles need to be tested for both physical and cyber-related fault conditions. The goal of this project is to develop theory, methods, and novel tools for generating and optimizing test trajectories and data inputs that can uncover both physical and cyber faults of future automotive vehicles. The level of vehicle reliability and safety achieved for current vehicles is remarkable considering their mass production, low cost, and wide range of operating conditions. If successful, the research advances made in this project will enable achieving similar levels of reliability and safety for future vehicles relying on advanced driver assistance technologies, connectivity and autonomy. The project will advance the field of cyber-physical systems, in general, and their lifecycle management, in particular. The validation and verification theory and methodology for cyberphysical systems will be expanded for uncovering anomalies and faults, especially using comprehensive case-based and optimization-based techniques for test scenario generation. The theoretical advances and case studies will contribute to the state-of-the-art in optimal control theory, game theory, information theory, data collection and processing, autonomous and connected vehicles, and automotive control. Sampling-based vehicle data acquisition and vehicle-aware data management strategies will be developed which can be applied more broadly, e.g., to cloud-based vehicle prognostics / conditional maintenance and mobile health-monitoring devices. Finally, approaches for efficient on-board data collection and aggregation will be implemented in a Cyber-physical system (CPS) Black Box prototype. The development of a vehicle-aware data management system (VDMS) will be pursued, leading to optimized use of data mining and compression inside the CPS Black Box to aggressively reduce the communication and computational costs. Synergistically with theoretical and methodological advances, automotive case studies will be undertaken with both realistic simulations and real experiments in collaboration with an industrial partner (AVL).
Off
University of Michigan Ann Arbor
-
National Science Foundation
Barzan Mozafari
Mark Oliver
Submitted by Ilya V. Kolmanovsky on September 23rd, 2016
Errors in cyber-physical systems can lead to disastrous consequences. Classic examples date back to the Therac-25 radiation incidents in 1987 and the Ariane 5 rocket crash in 1996. More recently, Toyota's unintended acceleration bug was caused by software errors, and certain cars were found vulnerable to attacks that can take over key parts of the control software, allowing attackers to even disable the brakes remotely. Pacemakers have also been found vulnerable to attacks that can cause deadly consequences for the patient. To reduce the chances of such errors happening, this project investigates the application of a technique called Foundational Verification to cyber-physical systems. In Foundational Verification, the system being developed is proved correct, in full formal detail, using a proof assistant. The main intellectual merit of the proposal is the attainment of previously unattainable levels of safety for cyber-physical systems because proofs in Foundational Verification are carried out in complete detail. To ensure that the techniques in this project are practical, they are evaluated within the context of a real flying quadcopter. The project's broader significance and importance is the improved correctness, safety and security of cyber-physical systems. In particular, this project lays the foundation for ushering in a new level of formal correctness for cyber-physical systems. Although the initial work focuses on quadcopters, the concepts, ideas, and research contributions have the potential for transformative impact on other kinds of systems, including power-grid software, cars, avionics and medical devices (from pacemakers and insulin pumps to defibrillators and radiation machines).
Off
University of California-San Diego
-
National Science Foundation
Miroslav Krstic
Submitted by Sorin Lerner on September 23rd, 2016
In the recent past the term "Smart Cities" was introduced to mainly characterize the integration into our daily lives of the latest advancements in technology and information. Although there is no standardized definition of Smart Cities, what is certain is that it touches upon many different domains that affect a city's physical and social capital. Smart cities are intertwined with traffic control systems that use advanced infrastructures to mitigate congestion and improve safety. Traffic control management strategies have been largely focused on improving vehicular traffic flows on highways and freeways but arterials have not been used properly and pedestrians are mostly ignored. This work proposes to introduce a novel hierarchical adaptive controls paradigm to urban network traffic control that will adapt to changing movement and interaction behaviors from multiple entities (vehicles, public transport modes, bicyclists, and pedestrians). Such a paradigm will leverage several key ideas of cyber-physical systems to rapidly and automatically pin-point and respond to urban arterial congestion thereby improving travel time and reliability for all modes. Safety will also be improved since advanced warnings actuated by the proposed cyber-physical system will alert drivers to congested areas thereby allowing them to avoid these areas, or to adapt their driving habits. Such findings have a tangible effect on the well-being, productivity, and health of the traveling public. The primary goal is to create a Cyber-Control Network (CCN) that will integrate seamlessly across heterogeneous sensory data in order to create effective control schemes and actuation sequences. Accordingly, this project introduces a Cyber-Physical architecture that will then integrate: (i) a sub-network of heterogeneous sensors, (ii) a decision control substrate, and (iii) a sub-actuation network that carries out the decisions of the control substrate (traffic control signals, changeable message signs). This is a major departure from more prevalent centralized Supervisory Control And Data Acquisition (SCADA), in that the CCN will use a hierarchical architecture that will dynamically instantiate the sub-networks together to respond rapidly to changing cyber-physical interactions. Such an approach allows the cyber-physical system to adapt in real-time to salient traffic events occurring at different scales of time and space. The work will consequently introduce a ControlWare module to realize such dynamic sub-network reconfiguration and provide decision signal outputs to the actuation network. A secondary, complementary goal is to develop a heterogeneous sensor network to reliably and accurately monitor and identify salient arterial traffic events. Other impacts of the project include the integration of the activities with practitioners (e.g., traffic engineers), annual workshops/tutorials, and outreach to K-12 institutions.
Off
University of Maryland College Park
-
National Science Foundation
Brian Scott
John Hourdos
Stephen Guy
Mihailo Jovanovic
Submitted by Nikolaos Papanikolopoulos on September 23rd, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Stanford University
-
National Science Foundation
Submitted by Ram Rajagopal on September 22nd, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
University of California-Davis
-
National Science Foundation
Submitted by Michael Zhang on September 22nd, 2016
Event
SPIE 2017
CALL FOR PAPERS SPIE 2017 conference on Cyber Physical Systems May 8-10, 2017 | Barcelona, Spain | http://spie.org/EMT/conferencedetails/cyber-physical-systems
Submitted by Anonymous on September 19th, 2016
Event
ANT-17
The 8th International Conference on Ambient Systems, Networks and Technologies (ANT-17) The goal of the ANT-2017 conference is to provide an international forum for scientists, engineers, and managers in academia, industry, and government to address recent research results and to present and discuss their ideas, theories, technologies, systems, tools, applications, work in progress and experiences on all theoretical and practical issues arising in the ambient systems paradigm, infrastructures, models, and technologies that have significant contributions to the advancement of amb
Submitted by Anonymous on September 15th, 2016
12th International Conference on Semantic Systems (SEMANTiCS 2016 ) The annual SEMANTiCS conference is the meeting place for professionals who make semantic computing work, who understand its benefits and encounter its limitations. Every year, SEMANTiCS attracts information managers, IT-architects, software engineers and researchers from organisations ranging from NPOs, through public administrations to the largest companies in the world.
Submitted by Anonymous on July 6th, 2016
Event
JRWRTC 2016
10th Junior Researcher Workshop on Real-Time Computing (JRWRTC 2016) in conjunction with the 24th International Conference on Real-Time and Network Systems (RTNS 2016) Brest, France | October 19-21, 2016 | http://rtns16.univ-brest.fr/
Submitted by Anonymous on July 6th, 2016
Subscribe to Transportation