Applications of CPS technologies essential for the functioning of a society and economy.
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
University of Florida
-
National Science Foundation
Submitted by John Harris on December 18th, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
University of Minnesota-Twin Cities
-
National Science Foundation
Tian He Submitted by Tian He on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
Submitted by Vijay Gupta on December 18th, 2015
Wireless sensor-actuator networks (WSAN) are systems consisting of numerous sensing and actuation devices that interact with the environment and coordinate their activities over a wireless communication network. This project studies "resilience" in WSANs. A resilient system is one that maintains an active awareness of surrounding threats and reacts to those threats in a manner that returns the system to operational normalcy in finite time. This project's approach to resilient WSANs rests on two fundamental trends. One trend uses machine-to-machine (M2M) communication networks that promise wireless networking with greater peak bit-rates and reliability than previously possible. The other trend comes from recent ideas that use quantization and event-triggered feedback in a unified manner to reduce bit rates required by real-time control systems. This project will evaluate and demonstrate this integrated control/communication approach to resilience on a multi-robotic testbed consisting of unmanned ground vehicles. The testbed will integrate M2M communication hardware/software with a multi-robot control architecture addressing task coordination and platform stabilization. This project broadens its impact through organizations and programs on and around the Notre Dame campus that facilitate industrial engagement and technology transfer. The project will engage undergraduate and graduate students to support the project's testbed and algorithm development. The project will augment and re-organize Notre Dame's Cyber-Physical System (CPS) curriculum by integrating the results of this project into courses.
Off
University of Notre Dame
-
National Science Foundation
Submitted by Michael Lemmon on December 18th, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
Cornell University
-
National Science Foundation
Eilyan Bitar Submitted by Eilyan Bitar on December 18th, 2015
This NSF Cyber-Physical Systems (CPS) Frontiers project "Foundations Of Resilient CybEr-physical Systems (FORCES)" focuses on the resilient design of large-scale networked CPS systems that directly interface with humans. FORCES aims to provide comprehensive tools that allow the CPS designers and operators to combine resilient control (RC) algorithms with economic incentive (EI) schemes. Scientific Contributions The project is developing RC tools to withstand a wide-range of attacks and faults; learning and control algorithms which integrate human actions with spatio-temporal and hybrid dynamics of networked CPS systems; and model-based design to assure semantically consistent representations across all branches of the project. Operations of networked CPS systems naturally depend on the systemic social institutions and the individual deployment choices of the humans who use and operate them. The presence of incomplete and asymmetric information among these actors leads to a gap between the individually and socially optimal equilibrium resiliency levels. The project is developing EI schemes to reduce this gap. The core contributions of the FORCES team, which includes experts in control systems, game theory, and mechanism design, are the foundations for the co-design of RC and EI schemes and technological tools for implementing them. Expected Impacts Resilient CPS infrastructure is a critical National Asset. FORCES is contributing to the development of new Science of CPS by being the first project that integrates networked control with game theoretic tools and the economic incentives of human decision makers for resilient CPS design and operation. The FORCES integrated co-design philosophy is being validated on two CPS domains: electric power distribution and consumption, and transportation networks. These design prototypes are being tested in real world scenarios. The team's research efforts are being complemented by educational offerings on resilient CPS targeted to a large and diverse audience.
Off
University of California at Berkeley
-
National Science Foundation
S. Sastry Submitted by S. Sastry on December 18th, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
University of Pennsylvania
-
National Science Foundation
George Pappas Submitted by George Pappas on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BM?s realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control. BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
University of Illinois at Chicago
-
National Science Foundation
Sudip Mazumder Submitted by Sudip Mazumder on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BMs realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control. BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Panganamala Kumar Submitted by Panganamala Kumar on December 18th, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
Temple University
-
National Science Foundation
Submitted by Shan Lin on December 18th, 2015
Subscribe to Critical Infrastructure