Applications of CPS technologies used in manufacturing.
Event
ICINCO 2018
15th International Conference on Informatics in Control, Automation and Robotics  The purpose of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO) is to bring together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Informatics.
Submitted by Anonymous on April 20th, 2018
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (IEEE ETFA 2018) ETFA 2018 is the 23rd Annual Conference of the IEEE Industrial Electronics Society (IES) focusing on the latest developments and new technologies in the field of industrial and factory automation. The conference aims to disseminate novel ideas and emerging trends, research results and practical achievements. ETFA 2018 will be held in the beautiful city of Turin, Italy, the home of worldwide renowned industrial companies.  
Submitted by Anonymous on April 3rd, 2018
Event
RESACS 2018
4th International Workshop on Requirements Engineering for Self-Adaptive and Cyber-Physical Systems (RESACS 2018) http://resacs2018.wordpress.com | http://twitter.com/RESACS_WS
Submitted by Bastian Tenbergen on March 27th, 2018
Event
SelPhyS 2018
Third Workshop on Self-Awareness in Cyber-Physical Systemsp The concept of self-awareness has become a hot research topic in a variety of disciplines such as robotics, artificial intelligence, control theory, networked systems, and so on. Its applicability has been explored in various application domains such as automotive, military, consumer electronics, industrial control, medical equipment, and so forth.
Submitted by Anonymous on February 28th, 2018
Software-Defined Control (SDC) is a revolutionary methodology for controlling manufacturing systems that uses a global view of the entire manufacturing system, including all of the physical components (machines, robots, and parts to be processed) as well as the cyber components (logic controllers, RFID readers, and networks). As manufacturing systems become more complex and more connected, they become more susceptible to small faults that could cascade into major failures or even cyber-attacks that enter the plant, such as, through the internet. In this project, models of both the cyber and physical components will be used to predict the expected behavior of the manufacturing system. Since the components of the manufacturing system are tightly coupled in both time and space, such a temporal-physical coupling, together with high-fidelity models of the system, allows any fault or attack that changes the behavior of the system to be detected and classified. Once detected and identified, the system will compute new routes for the physical parts through the plant, thus avoiding the affected locations. These new routes will be directly downloaded to the low-level controllers that communicate with the machines and robots, and will keep production operating (albeit at a reduced level), even in the face of an otherwise catastrophic fault. These algorithms will be inspired by the successful approach of Software-Defined Networking. Anomaly detection methods will be developed that can ascertain the difference between the expected (modeled) behavior of the system and the observed behavior (from sensors). Anomalies will be detected both at short time-scales, using high-fidelity models, and longer time-scales, using machine learning and statistical-based methods. The detection and classification of anomalies, whether they be random faults or cyber-attacks, will represent a significant contribution, and enable the re-programming of the control systems (through re-routing the parts) to continue production. The manufacturing industry represents a significant fraction of the US GDP, and each manufacturing plant represents a large capital investment. The ability to keep these plants running in the face of inevitable faults and even malicious attacks can improve productivity -- keeping costs low for both manufacturers and consumers. Importantly, these same algorithms can be used to redefine the production routes (and machine programs) when a new part is introduced, or the desired production volume is changed, to maximize profitability for the manufacturing operation.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Submitted by Sibin Mohan on November 30th, 2017

Due to their increasing use by civil and federal authorities and vast commercial and amateur applications, Unmanned Aerial Systems (UAS) will be introduced into the National Air Space (NAS); the question is only how this can be done safely. Today, NASA and the FAA are designing a new, (NextGen) automated air traffic control system for all aircraft, manned or unmanned. New algorithms and tools will need to be developed to enable computation of the complex questions inherent in designing such a system while proving adherence to rigorous safety standards. Researchers must develop the tools of formal analysis to be able to address the UAS in the NAS problem, reason about UAS integration during the design phase of NextGen, and tie this design to on-board capabilities to provide runtime System Health Management (SHM), ensuring the safety of people and property on the ground. This proposal takes a holistic view and integrates advances in the state of the art from three intertwined perspectives to address safe integration of unmanned systems into the national airspace: from on-board the vehicle, from the environment (NAS), and from the underlying theory enabling their formal analysis. There has been rapid development of new UAS technologies yet few of them are formally mathematically rigorous to the degree needed for FAA safety-critical system certification. This project bridges that gap, integrating new UAS and air traffic control designs with advances in formal analysis. Within the wealth of promising directions for autonomous UAS capabilities, this project fills a unique need, providing a direct synergy between on-board UAS SHM, the NAS environment in which they must operate, and the theoretical foundations common to both of these. This research will help to build a safer NAS with increased capacity for UAS and create broadly impactful capabilities for SHM on-board UAS. Advancements will require theoretical research into more scalable model checking and debugging of safety properties. Safety properties express the sentiment that "something bad does not happen" during any system execution; they represent the vast majority of the requirements for NextGen designs and all requirements researchers can monitor on-board a UAS for system heath management during runtime. This research will tackle new frontiers in embedding health management capabilities on-board UAS. Collaborations with aerospace system designers at the National Aeronautics and Space Administration and tool designers at the Bruno Kessler Foundation will aid real-life utility and technology transfer. Broader impact will be achieved by involving undergraduate students in the design of an open-source, affordable, all-COTS and 3D-printable UAS, which will facilitate flight testing of this project's research advances. An open-UAS design for academia will be useful both for classroom demonstrations and as a research platform. Further impact will be achieved by using this UAS and the research it enables in interactive teaching experiences for K-12, undergraduate, and graduate students and in mentoring outreach specifically targeted at girls achieving in Science, Technology, Engineering and Mathematics (STEM) subjects.

Off
Iowa State University
-
National Science Foundation
Submitted by Kristin Yvonne Rozier on November 28th, 2017
Intelligent Systems Conference (IntelliSys) 2018 - Call for Papers Technically Co-Sponsored by IEEE IntelliSys 2018 will focus in areas of intelligent systems and artificial intelligence and how it applies to the real world. IntelliSys provides a leading international forum that brings together researchers and practitioners from diverse fields with the purpose of exploring the fundamental roles, interactions as well as practical impacts of Artificial Intelligence. It is part of the conference series started in 2013.
Submitted by Anonymous on November 15th, 2017
Event
ARCS 2018
CALL FOR PAPERS, WORKSHOPS, & TUTORIALS 31st International Conference on Architecture of Computing Systems (ARC 2018) April 09 -12, 2018 | Braunschweig, Germany at the Technical University of Braunschweig | http://arcs2018.itec.kit.edu/
Submitted by Anonymous on October 5th, 2017
Cyber-physical systems (CPS) are engineered systems created as networks of interacting physical and computational processes. Most modern products in major industrial sectors, such as automotive, avionics, medical devices, and power systems already are or rapidly becoming CPS driven by new requirements and competitive pressures. However, in recent years, a number of successful cyber attacks against CPS targets, some of which have even caused severe physical damage, have demonstrated that security and resilience of CPS is a very critical problem, and that new methods and technologies are required to build dependable systems. Modern automotive vehicles, for example, employ sensors such as laser range finders and cameras, GPS and inertial measurement units, on-board computing, and network connections all of which contribute to vulnerabilities that can be exploited for deploying attacks with possibly catastrophic consequences. Securing such systems requires that potential points of compromise and vehicle-related data are protected. In order to fulfill the great promise of CPS technologies such as autonomous vehicles and realize the potential technological, economic, and societal impact, it is necessary to develop principles and methods that ensure the development of CPS capable of functioning dependably, safely, and securely. In view of these challenges, the project develops an approach for integration of reconfigurable control software design and moving target defense for CPS. The main idea is to improve CPS security by making the attack surface dynamic and unpredictable while ensuring safe behavior and correct functionality of the overall system. The proposed energy-based control design approach generates multiple alternatives of the software application that are robust to performance variability and uncertainty. A runtime environment is designed to implement instruction set randomization, address space randomization, and data space randomization. The heart of the runtime environment is a configuration manager that can modify the software configuration, either proactively or reactively upon detection of attacks, while preserving the functionality and ensuring stable and safe CPS behavior. By changing the control software on-the-fly, the approach creates a cyber moving target and raises significantly the cost for a successful attack without impacting the essential behavior and functionality. Demonstration and experimental evaluation will be performed using a hardware-in-the-loop simulation testbed for automotive CPS.
Off
Vanderbilt University
-
National Science Foundation
Xenofon  Koutsoukos Submitted by Xenofon Koutsoukos on September 19th, 2017
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications. The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics. The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience. This is a continuing grant of Award # 1562236
Off
Georgia Tech Research Corporation
-
National Science Foundation
Aaron Ames Submitted by Aaron Ames on September 19th, 2017
Subscribe to Manufacturing