Equipment used in the health care industry that use CPS technology.
Event
CyPhy 2016
Call for Papers Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016) Held in conjunction with ESWEEK 2016 October 6 2016 | Pittsburgh, PA, USA | http://www.cyphy.org/
Submitted by Anonymous on June 10th, 2016
Cells, to carry out many important functions, employ an elaborate transport network with bio-molecular components forming roadways as well as vehicles. The transport is achieved with remarkable robustness under a very uncertain environment. The main goal of this proposal is to understand how biology achieves such functionality and leveraging the knowledge toward realizing effective engineered transport mechanisms for micron sized cargo. The realization of a robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. A key challenge here is to probe the mechanisms often at the nanometer scale as the bio-molecular components are at tens of nanometer scale. The main tools for addressing these challenges come from an engineering perspective that is guided by existing insights from biology. The proposal will bring together researchers from engineering and biology and it provides an integrated environment for students. Moreover, it is known that an impaired transport mechanism can underlie many neurodegenerative maladies, and as the research here pertains to studying intracellular transport, discoveries hold the potential for shedding light on what causes the impaired transport. Robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. Daunting challenges from the underlying highly uncertain and complex environments impede enabling robust and efficient transport systems at micro-scale. Motivated by transport in biological cells, this work proposes a robust and efficient engineered infrastructure for transporting micron/molecular scale cargo using biological constructs. For probing and manipulating the transport network, the proposal envisions strategies for coarse and fine resolution objectives at the global and local scales respectively. At the fine scale of monitoring and control, scarce and expensive physical resources such as high resolution sensors have to be shared for interrogation/control of multiple carriers. In this proposal, the principles for joint control, sensor allocation and scheduling of resources to achieve enhanced performance objectives of a high resolution probing tool, will be developed. A modern control perspective forms an essential strategy for managing multiple objectives. At the global scale, entire traffic will be monitored to arrive at real-time and off-line inferences on traffic modalities. Associated principles for dynamically identifying and tracking clusters of carriers and their importance will be built. This categorization of physical elements and their importance will determine the dynamic allocation of computational resources. Associated study of trade-offs will guide a combined strategy for allocation of computational resources and gathering of information on physical elements. Methods based on the reconstruction of graph topologies for reaching inferences that are suited to dynamically related time trajectories for the transportation infrastructure will be developed. The research proposed is transformative as it will enable a new transport paradigm at the cellular scale, which will also provide unique insights into intracellular transport where it will be possible to investigate multiple factors under the same experimental conditions.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Submitted by Srinivasa Salapaka on April 12th, 2016
The project will produce breakthroughs in the science of human-machine interaction and will produce lasting impacts on exercise machine technologies. The proposed Cyber-Enabled Exercise Machines (CEEMs) adapt to their users, seeking to maximize the effectiveness of exercise while guaranteeing safety. CEEMs measure and process biomechanical variables and generate adjustments to its own resistance, and generate cues to be followed by the exerciser. CEEMs are reconfigurable by software, which permits a wide range of exercises with the same hardware. Two prototype machines will be field-tested with the student-athlete population and used to validate project goals. The prototypes will be a valuable instrument for dissemination and outreach, as well as for student engagement. The outcomes of this research have repercussions beyond athletic conditioning: the same foundations and methodologies can be followed to design machines for rehabilitation, exercise countermeasure devices for astronauts, and custom exercise devices for the elderly and persons with disabilities. Thus, the project has the potential to improve health of society members at various levels. This research will contribute to the foundations of cyber-physical system science in the following aspects: biomechanical modeling and real-time musculoskeletal state estimation; estimation theory and unscented H-infinity estimation; control theory and human-machine interaction dynamics, and micro-evolutionary optimization for real-time systems. The proposed Cyber-Enabled Exercise Machines (CEEMs) are highly reconfigurable devices which adapt to the user in pursuit of an optimization objective, namely maximal activation of target muscle groups. Machine adaptation occurs through port impedance modulation, and optimal cues are generated for the exerciser to follow. The goals of the project are threefold: i) development of foundational cyber-physical science and technology in the field of human-machine systems; ii) development of new approaches to modeling, design, control and optimization of advanced exercise machines, and iii) application of the above results to develop two custom-built CEEMs: a rowing ergometer and a 2-degree-of-freedom resistance machine.
Off
Cleveland State University
-
National Science Foundation
Kenneth Sparks
Antonie van den Bogert
Submitted by Hanz Richter on April 11th, 2016
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce. Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Off
WPI
-
National Science Foundation
Cagdas Onal
Taskin Padir Submitted by Taskin Padir on April 6th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Pennsylvania
-
National Science Foundation
Nadia Heninger
Andreas Haeberlen
Insup Lee Submitted by Insup Lee on April 5th, 2016
Epilepsy is one of the most common neurological disorders, affecting between 0.4% and 1% of the world's population. While seizures can be controlled in approximately two thirds of newly diagnosed patients through the use of one or more antiepileptic drugs (AEDs), the remainder experience seizures even on multiple medications. The primary impacts of the chronic condition of epilepsy on a patient are a lower quality of life, loss of productivity, comorbidities, and increased risk of death. Epilepsy is an intermittent brain disorder, and in localization-related epilepsy, which is the most common form of epilepsy, one or a few discrete brain areas (the seizure focus or seizure foci) are believed to be responsible for seizure initiation. More recent approaches with implantable electrical stimulation seizure control devices hold value as a therapeutic option for the control of seizures. These devices, directly or indirectly, target the seizure focus and seek to control its expression. In this project we will build a multichannel brain implantable device based on emerging cyber physical system (CPS) principles. This brain implantable CPS device will incorporate key design features to make the device dependable, scalable, composable, certifiable, and interoperable. The device will operate over the life of an animal, or a patient, and continuously record brain activity and stimulate the brain when seizure related activity is detected to abort an impending seizure. Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. The goal of this project is to create a second generation brain-implantable sensing and stimulating device (BISSD) based on emerging CPS principles and practice. The development of a BISSD as a exemplifies several defining aspects that inform and illustrate core CPS principles. First, to meet the important challenge of regulatory approval a composable, scalable and certifiable framework that supports testing in multiple species is proposed. Second, a BISSD must be wholly integrated with the patient and fully cognizant at every instant of brain state, including dynamic changes in both the normal and abnormal expression of brain physiology and therapeutic intervention. Thus, this project seeks a tight conjunction of the cyber solution that must monitor itself and monitor and stimulate the brain using implanted, adaptable, distributed, and networked electrodes, and the physical system which in this case is the intermittently failing human brain. Third, a BISSD must function for an extensive period of time, up to the life of the patient, because each surgery to place and retrieve a BISSD carries an attendant risk. This requirement necessitates a dependable solution, which this project seeks to reliably achieve through both an understanding of the brain's foreign body response and a unique hierarchical fault-tolerant design. Fourth, an advanced salient approaches to acquire, compress, and analyze sensor signals to achieve real-time monitoring and control of seizures is employed. This project should yield a powerful, scalable CPS framework for robust fault-tolerant implantable medical devices with real-time processing that can grow with advances in sensors, sensing modalities, time-series analysis, real-time computation, control, materials, power and knowledge of underlying biology. The USA has a competitive advantage in the control of seizures in medically refractory epilepsy. In the modern era, epilepsy surgery evolved in the USA in the 1970s and spread from here to other parts of the world. Similarly, the USA enjoys a competitive advantage in BISSDs, and success in this effort will enable the USA to build on and maintain this advantage. In addition to epilepsy, advances made here can be expected to benefit the treatment of other neurological and psychiatric brain disorders.
Off
University of North Carolina at Charlotte
-
National Science Foundation
Michael Fiddy
Ryan Adams
Submitted by Anonymous on April 5th, 2016
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce. Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Off
Northeastern University
-
National Science Foundation
Deniz Erdogmus Submitted by Deniz Erdogmus on March 31st, 2016
Event
ViPES 2016
4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES'2016) The 4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES 2016) will be held at Samos Island, Greece on July 17th, 2016. ViPES 2016 is co-located with the International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). Virtual prototyping stands for the development of hardware/software systems without using a real hardware prototype, i.e.
Submitted by Anonymous on March 24th, 2016
Laboratory-on-a-chip (LoC) technology is poised to improve global health through development of low-cost, automated point-of-care testing devices. In countries with few healthcare resources, clinics often have drugs to treat an illness, but lack diagnostic tools to identify patients who need them. To enable low-cost diagnostics with minimal laboratory support, this project will investigate domain-specific LoC programming language and compiler design in conjunction with device fabrication technologies (process flows, sensor integration, etc.). The project will culminate by building a working LoC that controls fluid motion through electronic signals supplied by a host PC; a forensic toxicology immunoassay will be programmed in software and executed on the device. This experiment will demonstrate benefits of programmable LoC technology including miniaturization (reduced reagent consumption), automation (reduced costs and uncertainties associated with human interaction), and general-purpose software-programmability (the device can execute a wide variety of biochemical reactions, all specified in software). Information necessary to reproduce the device, along with all software artifacts developed through this research effort, will be publicly disseminated. This will promote widespread usage of software-programmable LoC technology among researchers in the biological sciences, along with public and industrial sectors including healthcare and public health, biotechnology, water supply management, environmental toxicity monitoring, and many others. This project designs and implements a software-programmable cyber-physical laboratory-on-a-chip (LoC) that can execute a wide variety of biological protocols. By integrating sensors during fabrication, the LoC obtains the capability to send feedback in real-time to the PC controller, which can then make intelligent decisions regarding which biological operations to execute next. To bring this innovative and transformative platform to fruition, the project tackles several formidable research challenges: (1) cyber-physical LoC programming models and compiler design; (2) LoC fabrication, including process flows and cyber-physical sensor integration; and (3) LoC applications that rely on cyber-physical sensory feedback and real-time decision-making. By constructing a working prototype LoC, and programming a representative feedback-driven forensic toxicology immunoassay, the project demonstrates that the proposed system can automatically execute biochemical reactions that require a closed feedback loop. Expected broader impacts of the proposed work include reduced cost and increased reliability of clinical diagnostics, engagement with U.S. companies that use LoC technology, training of graduate and undergraduate students, increased engagement and retention efforts targeting women and underrepresented minorities, student-facilitated peer-instruction at UC Riverside, a summer residential program for underrepresented minority high-school students at the University of Tennessee, collaborations with researchers at the Oak Ridge National Laboratory, and creation, presentation, and dissemination of tutorial materials to promote the adoption and use of software-programmable LoCs among the wider scientific community.
Off
University of California, Riverside
-
National Science Foundation
Philip Brisk Submitted by Philip Brisk on March 9th, 2016
Assistive machines - like powered wheelchairs, myoelectric prostheses and robotic arms - promote independence and ability in those with severe motor impairments. As the state- of-the-art in these assistive Cyber-Physical Systems (CPSs) advances, more dexterous and capable machines hold the promise to revolutionize ways in which those with motor impairments can interact within society and with their loved ones, and to care for themselves with independence. However, as these machines become more capable, they often also become more complex. Which raises the question: how to control this added complexity? A new paradigm is proposed for controlling complex assistive Cyber-Physical Systems (CPSs), like robotic arms mounted on wheelchairs, via simple low-dimensional control interfaces that are accessible to persons with severe motor impairments, like 2-D joysticks or 1-D Sip-N-Puff interfaces. Traditional interfaces cover only a portion of the control space, and during teleoperation it is necessary to switch between different control modes to access the full control space. Robotics automation may be leveraged to anticipate when to switch between different control modes. This approach is a departure from the majority of control sharing approaches within assistive domains, which either partition the control space and allocate different portions to the robot and human, or augment the human's control signals to bridge the dimensionality gap. How to best share control within assistive domains remains an open question, and an appealing characteristic of this approach is that the user is kept maximally in control since their signals are not altered or augmented. The public health impact is significant, by increasing the independence of those with severe motor impairments and/or paralysis. Multiple efforts will facilitate large-scale deployment of our results, including a collaboration with Kinova, a manufacturer of assistive robotic arms, and a partnership with Rehabilitation Institute of Chicago. The proposal introduces a formalism for assistive mode-switching that is grounded in hybrid dynamical systems theory, and aims to ease the burden of teleoperating high-dimensional assistive robots. By modeling this CPS as a hybrid dynamical system, assistance can be modeled as optimization over a desired cost function. The system's uncertainty over the user's goals can be modeled via a Partially Observable Markov Decision Processes. This model provides the natural scaffolding for learning user preferences. Through user studies, this project aims to address the following research questions: (Q1) Expense: How expensive is mode-switching? (Q2) Customization Need: Do we need to learn mode-switching from specific users? (Q3) Learning Assistance: How can we learn mode-switching paradigms from a user? (Q4) Goal Uncertainty: How should the assistance act under goal uncertainty? How will users respond? The proposal leverages the teams shared expertise in manipulation, algorithm development, and deploying real-world robotic systems. The proposal also leverages the teams complementary strengths on deploying advanced manipulation platforms, robotic motion planning and manipulation, and human-robot co-manipulation, and on robot learning from human demonstration, control policy adaptation, and human rehabilitation. The proposed work targets the easier operation of robotic arms by severely paralyzed users. The need to control many degrees of freedom (DoF) gives rise to mode-switching during teleoperation. The switching itself can be cumbersome even with 2- and 3-axis joysticks, and becomes prohibitively so with more limited (1-D) interfaces. Easing the operation of switching not only lowers this burden on those already able to operate robotic arms, but may open use to populations to whom assistive robotic arms are currently inaccessible. This work is clearly synergistic: at the intersection of robotic manipulation, human rehabilitation, control theory, machine learning, human-robot interaction and clinical studies. The project addresses the science of CPS by developing new models of the interaction dynamics between the system and the user, the technology of CPS by developing new interfaces and interaction modalities with strong theoretical foundations, and the engineering of CPS by deploying our algorithms on real robot hardware and extensive studies with able-bodied and users with spinal cord injuries.
Off
Rehabilitation Institute of Chicago
-
National Science Foundation
Submitted by Brenna Argall on March 3rd, 2016
Subscribe to Medical Devices