The terms denote technology areas that are part of the CPS technology suite or that are impacted by CPS requirements.
Title: CPS: Breakthrough: Development of Novel Architectures for Control and Diagnosis of Safety-Critical Complex Cyber-Physical Systems This project is developing novel architectures for control and diagnosis of complex cyber-physical systems subject to stringent performance requirements in terms of safety, resilience, and adaptivity. These ever-increasing demands necessitate the use of formal model-based approaches to synthesize provably-correct feedback controllers. The intellectual merit of this research lies in a novel combination of techniques from the fields of dynamical systems, discrete event systems, reactive synthesis, and graph theory, together with new advancements in terms of abstraction techniques, computationally efficient synthesis of control and diagnosis strategies that support distributed implementations, and synthesis of acquisition of information and communication strategies. The project's broader significance and importance are demonstrated by the expected improvement of the safety, resilience, and performance of complex cyber-physical systems in critical infrastructures as well as the efficiency with which they are designed and certified. The original approach being developed is based on the combination of multi-resolution abstraction graphs for building discrete models of the underlying cyber-physical system with reactive synthesis techniques that exploit a representation of the solution space in terms of a finite structure called a decentralized bipartite transition system. The concepts of abstraction graph and decentralized bipartite transition system are novel and open new avenues of investigation with significant potential to the formal synthesis of safe, resilient, and adaptive controllers. This methodology naturally results in a set of decentralized and asynchronous controllers and diagnosers, which ensures greater resilience and adaptivity. Overall, this research will significantly impact the Science of Cyber-Physical Systems and the Engineering of Cyber-Physical Systems.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Stephane Lafortune Submitted by Stephane Lafortune on December 21st, 2015
Large battery systems with 100s/1000s cells are being used to power various physical platforms. For example, automobiles are transitioning from conventional powertrains to (plug-in) hybrid and electric vehicles (EVs). To achieve the desired efficiency of EVs, significant improvements are needed in the architecture and algorithms of battery management. This project will develop a new comprehensive battery management architecture, called Smart Battery Management System (SBMS). The research is expected to bridge the wide gap existing between cyber-physical system (CPS) research and electrification industry communities, provide environment-friendly solutions, increase the awareness of CPS, and develop skilled human resources. This project will incorporate and enhance a battery management system (BMS) by including battery state-of-charge (SoC) and state-of-health (SoH) algorithms as well as power management strategies on both pack and cell levels. Specifically, it consists of five main research tasks: (i) design a dynamically reconfigurable energy storage system to tolerate harsh internal and external stresses; (ii) develop cell-level thermal management algorithms; (iii) develop efficient, dependable charge and discharge scheduling algorithms in hybrid energy storage systems; (iv) develop a comprehensive, diagnostic/prognostic (P/D) algorithm with system parameters adjusted for making optimal decisions; and (v) build a testbed and evaluate the proposed architecture and algorithms on the testbed. This research will advance the state-of-the-art in the management of large-scale energy storage systems, extending their life and operation-time significantly, which is key to a wide range of battery-powered physical platforms. That is, SBMS will enable batteries to withstand excessive stresses and power physical platforms for a much longer time, all at low costs. SBMS will also serve as a basic framework for various aspects of CPS research, integrating (cyber) dynamic control and P/D mechanisms, and (physical) energy storage system dynamics.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Kang Shin Submitted by Kang Shin on December 21st, 2015
Many of the ideas that drive modern cloud computing, such as server virtualization, network slicing, and robust distributed storage, arose from the research community. But because today's clouds have particular, non-malleable implementations of these ideas "baked in," they are unsuitable as facilities in which to conduct research on future cloud architectures. This project creates CloudLab, a facility that will enable fundamental advances in cloud architecture. CloudLab will not be a cloud; CloudLab will be large-scale, distributed scientific infrastructure on top of which many different clouds can be built. It will support thousands of researchers and run hundreds of different, experimental clouds simultaneously. The Phase I CloudLab deployment will provide data centers at Clemson (with Dell equipment), Utah (HP), and Wisconsin (Cisco), with each industrial partner collaborating to explore next-generation ideas for cloud architectures CloudLab will be a place where researchers can try out ideas using any cloud software stack they can imagine. It will accomplish this by running at a layer below cloud infrastructure: it will provide isolated, bare-metal access to a set of resources that researchers can use to bring up their own clouds. These clouds may run instances of today's popular stacks, modest modifications to them, or something entirely new. CloudLab will not be tied to any particular particular cloud stack, and will support experimentation on multiple in parallel. The impact of cloud computing outside the field of computer science has been substantial: it has enabled a new generation of applications and services with direct impacts on society at large. CloudLab is positioned to have an immediate and substantial impact on the research community by providing access to the resources it needs to shape the future of clouds. Cloud architecture research, enabled by CloudLab, will empower a new generation of applications and services which will bring direct benefit to the public in areas of national priority such as medicine, smart grids, and natural disaster early warning and response.
Off
University of Utah
-
National Science Foundation
Brig 'Chip' Elliott
Kuang-Ching Wang
Submitted by Robert Ricci on December 21st, 2015
This project will design next-generation defense mechanisms to protect critical infrastructures, such as power grids, large industrial plants, and water distribution systems. These critical infrastructures are complex primarily due to the integration of cyber and physical components, the presence of high-order behaviors and functions, and an intricate and large interconnection pattern. Malicious attackers can exploit the complexity of the infrastructure, and compromise a system's functionality through cyber attacks (that is hacking into the computation and communication systems) and/or physical attacks (tampering with the actuators, sensors and the control system). This work will develop mathematical models of critical infrastructures and attacks, develop intelligent control-theoretic security mechanisms, and validate the findings on an industry-accredited simulation platform. This project will directly impact national security and economic competitiveness, and the results will be available and useful to utility companies. To accompany the scientific advances, the investigators will also engage in educational efforts to bring this research to the classroom at UCR, and will disseminate their results via scientific publications. The work will also create several opportunities for undergraduate and graduate students to engage in research at UCR, one of the nation's most ethnically diverse research-intensive institutions. This study encompasses theoretical, computational, and experimental research at UCR aimed at characterizing vulnerabilities of complex cyber-physical systems, with a focus on electric power networks, and control-theoretic defense mechanisms to ensure protection and graceful performance degradation against accidental faults and malicious attacks. This project proposes a transformative approach to cyber-physical security, which builds on a unified control-theoretic framework to model cyber-physical systems, attacks, and defense strategies. This project will undertake three main research initiatives ranging from fundamental scientific and engineering research to analysis using industry-accepted simulation tools: (1) modeling and analysis of cyber-physical attacks, and their impact on system stability and performance; (2) design of monitors to reveal and distinguish between accidental and malignant contingencies; and (3) synthesis of adaptive defense strategies for stochastic and highly dynamic cyber-physical systems. Results will first be characterized from a pure control-theoretic perspective with focus on stochastic, switching, and dynamic cyber-physical systems, so as to highlight fundamental research challenges, and then specialized for the case of smart grid, so as to clarify the implementation of monitors, attacks, and defense strategies. The findings and strategies will be validated for the case of power networks by using the RTDS simulation system, which is an industry-accredited tool for real-time tests of dynamic behavior, faults, attacks, monitoring systems, and defensive strategies.
Off
University of California at Riverside
-
National Science Foundation
Fabio Pasqualetti Submitted by Fabio Pasqualetti on December 21st, 2015
U.S. economic growth, energy security, and environmental stewardship depend on a sustainable energy policy that promotes conservation,efficiency, and electrification across all major sectors. Buildings are the largest sector and therefore an attractive target of these efforts: current Federal sustainability goals mandate that 50% of U.S.commercial buildings become net-zero energy by 2050. A range of options exists to achieve this goal, but financial concerns require a data-driven, empirically-validated approach. However, critical gaps exist in the energy and water measurement technology, and indoorclimate control science, needed to benchmark competing options, prioritize efficiency investments, and ensure occupant comfort. To address these challenges, this project proposes a new kind of "peel-and-stick" sensor that can be affixed to everyday objects to infer their contributions to whole-building resource consumption. To use the sensors, occupants or building managers simply tag end loads like a ceiling light, shower head, or range top. The sensors monitor the ambient conditions around a load and, using statistical methods,correlate those conditions with readings from existing electricity, gas, or water meters, providing individual estimates without intrusive metering. The sensors are built from integrated circuit technology laminated into smart labels, so they are small, inexpensive, and easy-to-deploy. The sensors are powered by the same ambient signals they sense, eliminating the need for periodic battery replacement or wall power. Collectively, these properties address cost and coverage challenges, and enable scalable deployment and widespread adoption. The intellectual merit of this proposal stems from the insight that the transfer and use of energy (and other resources) usually emits energy, often in a different domain, and that this emitted energy is often enough to intermittently power simple, energy-harvesting sensors whose duty cycle is proportional to the energy being transferred or used. Hence, the mere activation rate of the sensors signalsthe underlying energy use. The power-proportional relationship between usage activity and side channel harvesting, when coupled with state-of-the art, millimeter-scale, nano-power chips and whole-house or panel-level meters, enables small and inexpensive sensor tags that are pervasively distributed with unbounded lifetimes. But, networking and tasking them, and making sense of their data, requires a fundamental rethinking of low-power communications, control, and data fusion to abstract the intermittent, unreliable, and noisy sensor infrastructure into actionable information. This project's broader impact stems from an integrated program of education, research, and outreach that (i) creates a smart objects focused curriculum whose classroom projects are motivated by research needs, (ii) provides research experiences for undergraduates and underrepresented minorities, (iii) mentors students on all aspects of successful research from articulating hypotheses to peer-reviewing papers,(iv) disseminates teaching materials on embedded systems and research pedagogy, (v) produces students who bridge disciplines,operating at the intersection of measurement science, information technology, and sustainability policy, and (vi) translates scientific discovery and technical knowledge into beneficial commercial products through industry outreach and internships, and (vii) engages with the National Labs to ensure that the research addresses pressing problems.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Dutta Prabal on December 21st, 2015
The goal of this project is to demonstrate new cyber-physical architectures that allow the sharing of closed-loop sensor networks among multiple applications through the dynamic allocation of sensing, networking, and computing resources. The sharing of sensor network infrastructures makes the provision of data more cost efficient and leads to virtual private sensor network (VPSN) architectures that can dramatically increase the number of sensor networks available for public use. These cyber infrastructures support a paradigm, called Sensing as a Service, in which users can obtain sensing and computational resources to generate the required data for their sensing applications. The challenge in sharing closed-loop sensor networks is that one application's actuation request might interfere with another's request. To address this challenge the VPSN architectures are comprised of three components: 1) a sensor virtualization layer that ensures that users obtain timely access to sensor data when requested and isolates their requests from others' through the creation of appropriate scheduling algorithms; 2) a computation virtualization layer that enables the allocation of computational resources for real-time data intensive applications which is closely tied to the sensor virtualization layer; 3) a virtualization toolkit that supports application developers in their efforts to build applications for virtualized, closed-loop sensor networks. The sharing of closed-loop sensor networks leads to substantial savings on infrastructure and maintenance costs. The proposed VPSN architectures enable users to create their own applications without having detailed knowledge of sensing technologies and allows them to focus on the development of applications. VPSNs will contribute to the creation of a nationwide, shared sensing cyber infrastructure, which will provide critical information for public safety and security. VPSNs will also help to revolutionize the way undergraduate and graduate students from many disciplines perform research. Students will be shielded from some of the complexities of sensor networks and allowed to focus on their core research. To prepare students from the Electrical and Computer Engineering (ECE) department at the University of Massachusetts to perform this kind of research, new classes in the area of Integrative Systems Engineering and Sensor Network Virtualization will be offered.
Off
University of Massachusetts Amherst
-
National Science Foundation
Submitted by Michael Zink on December 21st, 2015
This INSPIRE award is partially funded by the Cyber-Physical Systems Program in the Division of Computer and Network Systems in the Directorate for Computer and Information Science and Engineering, the Information and Intelligent Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer and Information Science and Engineering, the Computer Systems Research Program in the Division of Computer and Network Systems in the Directorate for Computer and Information Science and Engineering, and the Software and Hardware Foundations Program in the Division of Computing and Communications Foundations in the Directorate for Computer and Information Science and Engineering. Sound plays a vital role in the ocean ecosystem as many organisms rely on acoustics for navigation, communication, detecting predators, and finding food. Therefore, the 3D underwater soundscape, i.e., the combination of sounds present in the immersive underwater environment, is of extreme importance to understand and protect underwater ecosystems. This project is creating a transformative distributed ocean observing system for studying the underwater soundscape at revolutionary spatial (~100 meters) and temporal (~100 seconds) resolutions that is also able to simultaneously resolve small-scale ocean current flow. These breakthroughs are achieved using a distributed collective of small hydrophone-equipped subsurface floats, which utilize group management techniques and sensor fusion to understand the ocean soundscape in a Lagrangian manner. The ability to record soundscapes provides a novel sensing technology to understand the effects of sound on marine ecosystems and the role that sound plays for species development. Experiments off the coast of San Diego, CA, and a research campaign in the Cayman Islands provide concrete scientific studies that are tightly interwoven with the engineering research. Oceans are drivers of global climate, are home to some of the most important and diverse ecosystems, and represent a substantial contribution to the world's economy as a major source of food and employment. The technological and scientific advances in this project provide crucial tools to understand natural ocean resources, by studying soundscapes at spatio-temporal scales that were heretofore extremely burdensome and expensive to obtain.
Off
University of California at San Diego
-
National Science Foundation
Curt  Schurgers Submitted by Curt Schurgers on December 21st, 2015
The objective of this project is to improve the performance of autonomous systems in dynamic environments, such as disaster recovery, by integrating perception, planning paradigms, learning, and databases. For the next generation of autonomous systems to be truly effective in terms of tangible performance improvements (e.g., long-term operations, complex and rapidly changing environments), a new level of intelligence must be attained. This project improves the state of robotic systems by enhancing their ability to coordinate activities (such as searching a disaster zone), recognize objects or people, account for uncertainty, and "most important" learn, so the system's performance is continuously improving. To do this, the project takes an interdisciplinary approach to developing techniques in core areas and at the interface of perception, planning, learning, and databases to achieve robustness. This project seeks to significantly improve the performance of cyber-physical systems for time-critical applications such as disaster monitoring, search and rescue, autonomous navigation, and security and surveillance. It enables the development of techniques and tools to augment all decision making processes and applications which are characterized by continuously changing operating conditions, missions and environments. The project contributes to education and a diverse engineering workforce by training students at the University of California, Riverside, one of the most diverse research institutions in US and an accredited Hispanic Serving Institution. Instruction and research opportunities cross traditional disciplinary boundaries, and the project serves as the basis for undergraduate capstone design projects and a new graduate course. The software and testbeds from this project will be shared with the cyber-physical system research community, industry, and end users. The project plans to present focused workshops/tutorials at major IEEE and ACM conferences. The results will be broadly disseminated through the project website. For further information see the project website at: http://vislab.ucr.edu/RESEARCH/DSLC/DSLC.php
Off
University of California at Riverside
-
National Science Foundation
Amit Roy
Submitted by Bir Bhanu on December 21st, 2015
This project develops the theory and technology for a new frontier in cyber-physical systems: cyber-physical manipulation. The goal of cyber-physical manipulation is to enable groups of hundreds or thousands of individual robotic agents to collaboratively explore an environment, manipulate objects in that environment, and transport those objects to desired locations. The project embraces realistic assumptions about the communication, computation, and sensing capabilities of simple individual robots, leading to algorithmic solutions that intrinsically leverage population size in favor of complex agents. Cyber-physical solutions for locating, grasping, and characterizing objects require tools based on distributed computational geometry, while the tasks of planning a path, initiating motion, and controlling the trajectory require tools from decentralized control and consensus. The project lays the theoretical and algorithmic foundations of cyber-physical manipulation, and proves the feasibility of the concept experimentally in hardware tests with up to 100 individual robots. The project uses the problem of manipulation as a stage on which to explore the deeper cyber-physical issue of information asymmetry; the difference in the state of the world as perceived by different agents in the system due to differences in their history of observations, and limitations in their communication capabilities. The object retrieval problem studied in this project is an elemental building block for enabling more complex cyber-physical manipulation tasks. It provides crucial algorithmic components for numerous applications of broad societal benefit, including automated construction (in which hundreds or thousands of robots fabricate large, complex structures), autonomous emergency response (in which large teams of robots find and retrieve incapacitated human survivors after a disaster), and automated environmental cleanup (in which robots secure a dangerous environment by removing debris or hazardous substances). Furthermore, distributed algorithms for multi-agent systems are of broad scientific relevance beyond the realm of cyberphysical systems. The natural world is, in its algorithmic essence, decentralized at many levels. Hence, any advancement in the understanding of how groups of individual agents collaborate to accomplish a coherent task will have broad scientific ramifications. The project has a robust educational and outreach program. One aspect is a hands-on curriculum for robotics outreach activities, called the 'Cyber-Physical Manipulation Lab.' Using a custom-designed robot platform, this educational module introduces the theory and practice of cyber-physical systems to young students to attract them to STEM subject areas at an early age. Results of the project are also incorporated into several graduate and undergraduate level courses at Rice University and Boston University.
Off
William Marsh Rice University
-
National Science Foundation
James McLurkin Submitted by James McLurkin on December 21st, 2015
This cross-disciplinary project brings together a team of engineering and computer science researchers to create, validate, and demonstrate the value of new techniques for ensuring that systems composed of combinations of hardware, software, and humans are designed to operate in a truly synergistic and safe fashion. One notable and increasingly common feature of these "Cyber-Physical-Human" (CPH) systems is that the responsibility for safe operation and performance is typically shared by increasingly sophisticated automation in the form of hardware and software, and humans who direct and oversee the behavior of automation yet may need to intervene to take over manual or shared system control when unexpected environmental situations or hardware or software failures occur. The ultimate goal is to achieve levels of safety and performance in system operation that exceed the levels attainable by either skilled human operators or completely autonomous systems acting alone. To do so, the research team will draw upon their expertise in the design of robust, fault-tolerant control systems, in the design of complexity-reduction architectures for software verification, and in human factors techniques for cognitive modeling to assure high levels of human situation awareness through effective interface design. By doing so, the safety, cost and performance benefits of increasingly sophisticated automation can be achieved without the frequently observed safety risks caused by automation creating greater distance between human operators and system operation. The techniques will be iteratively created and empirically evaluated using experimentation in human-in-the-loop simulations, including a medium-fidelity aircraft and flight simulator and a simulation of assistive automation in a medical context. More broadly, this research is expected to impact and inform the engineering of future CPH systems generally, for all industries and systems characterized by an increasing use of hardware and software automation directed and overseen by humans who provide an additional layer of safety in expected situations, Examples include highway and automotive automation, aerospace and air traffic control automation, semi-automated process control systems, and the many forms of automated systems and devices increasingly being used in medical contexts, such as the ICU and operating room. This research is also expected to inform government and industry efforts to provide safety certification criteria for the technologies used in CPH systems, and to educate a next generation of students trained in the cross-disciplinary skills and abilities needed to engineer the CPH systems of the future. The investigators will organize industry, academic, and government workshops to disseminate results and mentor students who are members of underrepresented groups through the course of this research project.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Submitted by Alex Kirlik on December 21st, 2015
Subscribe to CPS Technologies