The terms denote technology areas that are part of the CPS technology suite or that are impacted by CPS requirements.
Computing Community Consortium (CCC) Workshop New Forms of Industry - Academy Partnership in CPS Research May 19, 2009 Room 103, Innovation Hall George Mason University Fairfax, Virginia, 22030
Chris vanBuskirk Submitted by Chris vanBuskirk on April 16th, 2012
Event
ICCPS 2011
The objective of this conference is to be a primary forum for reporting state-of-the-art advances and innovations in theoretical principles, tools, applications, systems infrastructure, and testbeds for cyber-physical systems. Contributions should emphasize the cross-cutting, system-wide themes.
Submitted by Anonymous on April 16th, 2012
Event
CPSWeek 2011
Submitted by Anonymous on April 16th, 2012

Cyber-physical systems (CPS) are engineered systems that are built from and depend upon the synergy of computational and physical components.  Emerging CPS will be coordinated, distributed, and connected, and must be robust and responsive.  The CPS of tomorrow will need to far exceed the systems of today in capability, adaptability, resiliency, safety, security, and usability.  Examples of the many CPS application areas include the smart electric grid, smart transportation, smart buildings, smart medical technologies, next-generation air traffic management, and advanced manufacturing.  CPS will transform the way people interact with engineered systems, just as the Internet transformed the way people interact with information.  However, these goals cannot be achieved without rigorous systems engineering.

The December 2010 report of the President's Council of Advisors on Science and Technology, Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology calls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness, including aerospace, automotive, chemical production, civil infrastructure, energy, healthcare, manufacturing, materials and transportation.

We do not yet have a mature science to support systems engineering of high confidence CPS, and the consequences are profound.  Traditional analysis tools are unable to cope with the full complexity of CPS or adequately predict system behavior. The present electric power grid, an ad hoc system, experiences blackouts over large regions, tripped by minor events that escalate with surprising speed into widespread power failures.  This illustrates the limitations of the current science and technology, which do not enable us to conceptualize and design for the deep interdependencies among engineered systems and the natural world.  At the same time, pressure to develop technologies such as renewable energy, wireless health, advanced manufacturing, smart materials, and electrified ground and air vehicles creates an unprecedented opportunity to rethink many important classes of systems.

The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems upon which people can depend with high confidence. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program aims to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors.  To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and test beds.

Three types of research and education projects will be considered, which differ in scope and goals:

  • Breakthrough projects must offer a significant advance in fundamental CPS science, engineering and/or technology that has the potential to change the field.  Funding for Breakthrough projects may be requested for a total of  up to $750,000 for a period of up to 3 years.
  • Synergy projects must demonstrate innovation at the intersection of multiple disciplines, to accomplish a clear goal that requires an integrated perspective spanning the disciplines.  Funding for Synergy projects may be requested for a total of $750,001 to $2,000,000 for a period of 3 to 4 years.
  • Frontiers projects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects.  Funding may be requested for a total of $1,200,000 to $10,000,000 for a period of 4 to 5 years.  Note that, due to the difference in goals and scope, the range for Frontiers projects overlaps with the range for Synergy projects.

The CPS program is cooperating with other government agencies to support cyber-physical systems research that is relevant to their missions. Dear Colleague Letters will announce these opportunities as they arise.

A more complete description of the CPS program is provided in Section II, Program Description, of this solicitation.

CONTACTS
Image removed.

Name Email Phone Room
Helen  Gill hgill@nsf.gov (703) 292-7834  1175  
Theodore  P. Baker tbaker@nsf.gov (703) 292-8608  1175  
Ralph  Wachter rwachter@nsf.gov (703) 292-8950  1175  
Radhakisan  Baheti rbaheti@nsf.gov (703) 292-8339  525  
Bruce  Kramer bkramer@nsf.gov (703) 292-5348  545S  

PROGRAM GUIDELINES
Image removed.
Solicitation  12-520

DUE DATES

Full Proposal Window:  February 15, 2012 - March 15, 2012

Full Proposal Window:  December 17, 2012 - January 22, 2013

Proposals will be accepted only within these windows.

THIS PROGRAM IS PART OF
Image removed.
Additional Funding Opportunities for the CCF Community
Image removed.
Additional Funding Opportunities for the CNS Community
Image removed.
Additional Funding Opportunities for the IIS CommunityImage removed.


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program

News

General Announcement
Not in Slideshow
Submitted by Anonymous on February 27th, 2012
Growing demands on our civil infrastructure have heightened the need for smart structural components and systems whose behavior and performance can be controlled under a variety of loading scenarios such as high winds and earthquakes. However, due to the sheer size, scale and cost of most civil engineering structures, design and testing of such smart structures needs to be conducted using a hybrid cyber-physical approach where the infrastructure system in question, for example a bridge, is studied by coupling a small number of physical components with a numerical model of the rest of the structure. Undoubtedly, the success of such a hybrid approach, especially for dynamic real-time applications, hinges on effective integration of the cyber and physical components of the system. This project provides the essential building blocks and a computational integration platform to enable real-time hybrid testing of civil engineering structures. Design and development of physical components, multi-level numerical models, and real-time control algorithms will be conducted at Purdue University. Washington University will provide an adaptive, configurable concurrency platform and communication mechanisms that meet the strict scheduling constraints of real-time cyber-physical systems. The two institutions will collaboratively design a prototype system and conduct extensive testing to validate the integration of the various components and evaluate system performance. Specifications, software, benchmarks, and data developed during the course of this project will be made freely available to the cyber-physical research community. In addition to directly advancing the state-of-the-art in real-time hybrid testing, this research will also impact the areas of avionics, automotive design, smart grids for distributed power transmission and similar applications in other domains.
Off
Purdue University
-
National Science Foundation
Arun Prakash
Arun  Prakash Submitted by Arun Prakash on December 15th, 2011
Growing demands on our civil infrastructure have heightened the need for smart structural components and systems whose behavior and performance can be controlled under a variety of loading scenarios such as high winds and earthquakes. However, due to the sheer size, scale and cost of most civil engineering structures, design and testing of such smart structures needs to be conducted using a hybrid cyber-physical approach where the infrastructure system in question, for example a bridge, is studied by coupling a small number of physical components with a numerical model of the rest of the structure. Undoubtedly, the success of such a hybrid approach, especially for dynamic real-time applications, hinges on effective integration of the cyber and physical components of the system. This project provides the essential building blocks and a computational integration platform to enable real-time hybrid testing of civil engineering structures. Design and development of physical components, multi-level numerical models, and real-time control algorithms will be conducted at Purdue University. Washington University will provide an adaptive, configurable concurrency platform and communication mechanisms that meet the strict scheduling constraints of real-time cyber-physical systems. The two institutions will collaboratively design a prototype system and conduct extensive testing to validate the integration of the various components and evaluate system performance. Specifications, software, benchmarks, and data developed during the course of this project will be made freely available to the cyber-physical research community. In addition to directly advancing the state-of-the-art in real-time hybrid testing, this research will also impact the areas of avionics, automotive design, smart grids for distributed power transmission and similar applications in other domains.
Off
Washington University
-
National Science Foundation
Christopher Gill
Christopher Gill Submitted by Christopher Gill on December 15th, 2011
This NSF grant supports the First PI Meeting and Workshop on Cyber-Physical Systems (CPS), held at the Westin Arlington Gateway hotel, in Arlington, VA on Aug 10-12, 2010. The purpose of this meeting is to provide a forum for scientific interaction among a wide range of stakeholders in academia, industry and federal agencies; to review new developments in CPS foundations; to identify new, emerging applications; and to discuss technology gaps and barriers. The program of the meeting includes presentations from projects funded by NSF under the Cyber-Physical Systems program, government and industry panels, and topical discussion groups.
Off
Vanderbilt University
-
National Science Foundation
Gabor Karsai
Gabor Karsai Submitted by Gabor Karsai on December 6th, 2011
This award supports the first Summer School on Cyber-Physical Systems, held at the Georgia Institute of Technology, Atlanta, Georgia, June 22-25, 2009. NSF funds support outreach and enable the participation of US graduate students and early career faculty in this international event. Cyber Physical Systems (CPS) are systems that rely on a tight integration of computation, communication, and controls, for their operation and interaction with the physical environment in which they are deployed. Such systems must be able to operate safely, dependably, securely, efficiently and in real-time, in potentially highly uncertain or unstructured environments. CPS are expected to have great technical, economic and societal impacts in the near future. The objective of the Georgia Tech Summer School on Cyber-Physical Systems is to establish a forum for intellectual exchange on CPS science and technology for researchers from industry and academia. The format of the Summer School is a five-day meeting, organized around the different aspects of Cyber Physical Systems. The topical areas covered include: formal methods, distributed embedded systems, networked control systems, embedded software, scheduling, platforms, and applications.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Wolf, Marilyn
Marilyn Wolf Submitted by Marilyn Wolf on December 6th, 2011
This project will construct a wireless network of animal-borne embedded devices that will be deployed and tested in a biologically-relevant application. The networked devices will provide not only geo-location data, but also execute cooperative strategies that save battery-life by selectively recording bandwidth-intensive audio and high-definition video footage of occurrences of animal group behavior of interest, such as predation. This project comprises three concurrent and interdependent research themes. The first is the investigation of methods to design and analyze the performance of distributed algorithms that implement autonomous decisions at the mobile agents, subject to communication and computational constraints. The second will pursue data-driven fundamental research on the modeling of animal group motion and will promote a formal understanding of the mechanisms of social interaction. The third is centered on the investigation of methods for hardware integration to build distributed networks of embedded devices that are capable of executing the newly developed algorithms, subject to power and weight constraints. The results and experience gained in this project will guide the development of effective autonomous systems for the monitoring and protection of endangered species. This project will create undergraduate and graduate research opportunities at all participating institutions, expanding on an existing collaboration between the University of Maryland, Princeton University, and the National Geographic Society. There is the potential for using wide-reaching media resources to disseminate the results of this project to a broad audience. This may contribute to attracting more students to engineering and science.
Off
Princeton University
-
National Science Foundation
Leonard, Naomi
Naomi Leonard Submitted by Naomi Leonard on December 6th, 2011
The focus of this project is the efficient implementation of multiple control and non-control automotive applications in a distributed embedded system (DES) with a goal of developing safe, dependable, and secure Automotive CPS. DES are highly attractive due to the fact that they radically enhance the capabilities of the underlying system by linking a range of devices and sensors and allowing information to be processed in unprecedented ways. Deploying control and non-control applications on a modern DES, which uses advanced processor and communication technology, introduces a host of challenges in their analysis and synthesis, and leads to a large semantic gap between models and their implementation. This gap will be filled via the development of a novel CPS architecture by stitching together common fundamental principles of multimodality from real-time systems and related notions of switching in control theory and integrating them into a co-design of real-time platforms and adaptive controllers. This architecture will be validated at the Toyota Technical Center in the context of engine control and diagnostics. The results of this project will provide the science and technology for a foundation in any and all infrastructure systems ranging from finance and energy to telecommunication and transportation where distributed embedded systems are present. In addition to training the graduate and undergraduate students, and mentoring a post-doctoral associate who will gain multi-domain expertise in advanced control, real-time computation and communication, and performance analysis, an inter-school graduate and an integrated summer course will be developed on control in embedded systems and combined with on-going outreach programs at MIT and UPenn for minority and women undergraduate students and K-12 students.
Off
University of Pennsylvania
-
National Science Foundation
Lee, Insup
Insup Lee Submitted by Insup Lee on December 6th, 2011
Subscribe to CPS Technologies