Solves the network-wide contraflow lane reversal problem using three different methodologies . The problem is analougus to many Network Design Problems (NDP).
The network and demand data is provided as in TNTP data format.
To run use: python3 -m experiments.{name of the file without extension}
Requirements: gurobipy, networkx, scipy, numpy, pwlf
Submitted by Salomonw Wollenstein-Betech on May 3rd, 2022
Recent years have seen an explosion in the use of cellular and wifi networks to deploy fleets of semi-autonomous physical systems, including unmanned aerial vehicles (UAVs), self-driving vehicles, and weather stations to perform tasks such as package delivery, crop harvesting, and weather prediction. The use of cellular and wifi networks has dramatically decreased the cost, energy, and maintenance associated with these forms of embedded technology, but has also added new challenges in the form of delay, packet drops, and loss of signal. Because of these new challenges, and because of our limited understanding of how unreliable communication affects performance, the current protocols for regulating physical systems over wireless networks are slow, inefficient, and potentially unstable. In this project we develop a new computational framework for designing provably fast, efficient and safe protocols for the control of fleets of semi-autonomous physical systems.
The systems considered in this project are dynamic, defined by coupled ordinary differential equations, and connected by feedback to a controller, with a feedback interconnection which has multiple static delays, multiple time-varying delays, or is sampled at discrete times. For these systems, we would like to design optimal and robust feedback controllers assuming a limited number of sensor measurements are available. Specifically, we seek to design a class of algorithms which are computationally efficient, which scale to large numbers of subsystems, and which, given models of the dynamics, communication links, and uncertainty, will return a controller which is provably stable, robust to model uncertainty, and provably optimal in the relevant metric of performance. To accomplish this task, we leverage a new duality result which allows the problem of controller synthesis for infinite-dimensional systems to be convexified. This result allows the problem of optimal and robust dynamic output-feedback controller synthesis to be reformulated as feasibility of a set of convex linear operator inequalities. We then use semidefinite programming to parametrize the set of feasible operators and thereby test feasibility of the inequalities with little to no conservatism. In a similar manner, estimator design and optimal controller synthesis are recast as semidefinite programming problems and used to solve the problems of sampled-data and systems with input delay. The algorithms will be scalable to at least 20 states and the controllers will be field-tested on a fleet of wheeled robotic vehicles.
As multi-agent systems become ubiquitous, the ability to satisfy multiple system-level constraints in these systems grows increasingly important. In applications ranging from automated cruise control to safety in robot swarms, barrier functions have emerged as a tool to provably meet such constraints by guaranteeing forward invariance of a set. However, satisfying multiple constraints typically implies formulating multiple barrier functions, bringing up the need to address the degree to which multiple barrier functions may be composed through Boolean logic.
This paper studies the multi-agent average consensus problem under the requirement of differential privacy of the agents’ initial states against an adversary that has access to all the messages. We first establish that a differentially private consensus algorithm cannot guarantee convergence of the agents’ states to the exact average in distribution, which in turn implies the same impossibility for other stronger notions of convergence.
Airborne networking, unlike the networking of fixed sensors, mobile devices, and slowly-moving vehicles, is very challenging because of the high mobility, stringent safety requirements, and uncertain airspace environment. Airborne networking is important because of the growing complexity of the National Airspace System with the integration of unmanned aerial vehicles (UAVs). This project develops an innovative new theoretical framework for cyber-physical systems (CPS) to enable airborne networking, which utilizes direct flight-to-to-flight communication for flexible information sharing, safe maneuvering, and coordination of time-critical missions.
This project uses an innovative co-design approach that exploits the mutual benefits of networking and decentralized mobility control in an uncertain heterogeneous environment. The approach departs from the usual perspective that views physical mobility as communication constraints, communication as constraints for decentralized mobility control, and uncertain environment as constraints for both. Instead, approach taken here proactively exploits the constraints, uncertainty, and new structures with information to enable high-performance designs. The features of the co-design such as scalability, fast response, trackability, and robustness to uncertainty advance the core CPS science on decision-making for large-scale networks under uncertainty.
The technological advances developed in this research will contribute to multiple fields, including mobile networking, decentralized control, experiment design, and general real-time decision making under uncertainty for CPS. Technology transfer will be pursued through close collaboration with industries and national laboratories. This novel research direction will also serve as a unique backdrop to inspire the CPS workforce. New teaching materials will benefit the future CPS workforce by equipping them with a knowledge base in networking and control. Broad outreach and dissemination activities that involve undergraduate student societies, K-12 school teaching, and public events, all stemming from the PI's current efforts, will be enhanced.
The U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for two new programs that aim to solve some of the nation’s most pressing energy challenges by accelerating the development of novel energy technologies. NEXT-Generation Energy Technologies for Connected and Automated on-Road vehicles (NEXTCAR) seeks to develop new technologies that decrease energy consumption of future vehicles through the use of connectivity and automation.
“We must continue to invest in programs that encourage the scientific community to think boldly and differently about our nation’s energy future,” said ARPA-E Director Dr. Ellen D. Williams. “The NEXTCAR program’s focus on exploiting automation to improve energy efficiency in future vehicles."
Significant research and development is underway to make future vehicles more connected and automated in order to reduce road accidents and traffic fatalities, but these technologies can also be leveraged to improve energy efficiency in future vehicles. The NEXTCAR program is providing up to $30 million in funding to create new control technologies that reduce the energy consumption of future vehicles by using connectivity and vehicle automation. The program seeks transformative technological solutions that will enable at least a 20 percent reduction in the energy consumption of future Connected and Automated Vehicles (CAVs), compared to vehicles without these technologies.
For more information and to view the full funding opportunity announcement, please click here.
This proposal will establish a framework for developing distributed Cyber-Physical Systems operating in a Networked Control Systems (NCS) environment. Specific attention is focused on an application where the computational, and communication challenges are unique due to the sheer size of the physical system, and communications between system elements include potential for significant losses and delays. An example of this is the power grid which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources. Although, much has been done to model and analyze the impact of data dropouts and delay in NCS at a theoretical level, their impact on the behavior of cyber physical systems has received little attention. As a result much of the past research done on the `smart grid' has oversimplified the `physical' portion of the model, thereby overlooking key computational challenges lying at the heart of the dimensionality of the model and the heterogeneity in the dynamics of the grid. A clear gap has remained in understanding the implications of uncertainties in NCS (e.g. bandwidth limitations, packet dropout, packet disorientation, latency, signal loss, etc.) cross-coupled with the uncertainties in a large power grid with wind farms (e.g. variability in wind power, fault and nonlinearity, change in topology etc.) on the reliable operation of the grid. To address these challenges, this project will, for the first time, develop a modeling framework for discovering hitherto unknown interactions through co-simulation of NCS, distributed computing, and a large power grid included distributed wind generation resources. Most importantly, it addresses challenges in distributed computation through frequency domain abstractions and proposes two novel techniques in grid stabilization during packet dropout.
The broader impact lies in providing deeper understanding of the impact of delays and dropouts in the Smart Grid. This will enable a better utilization of energy transmission assets and improve integration of renewable energy sources. The project will facilitate participation of women in STEM disciplines, and will include outreach with local Native American tribal community colleges
This project will develop fundamental understanding of impact of network delays and drops using an approach that is applicable to a variety of CPS. It will enable transformative Wide-Areas Measurement Systems research for the smart grid through modeling adequacy studies of a representative sub-transient model of the grid along with the representation of packet drop in the communication network by a Gilbert model. Most importantly, fundamental concepts of frequency domain abstraction including balanced truncation and optimal Hankel-norm approximation are proposed to significantly reduce the burden of distributed computing. Finally, a novel `reduced copy' approach and a `modified Kalman filtering' approach are proposed to address the problem of grid stabilization using wind farm controls when packet drop is encountered.
Airborne networking, unlike the networking of fixed sensors, mobile devices, and slowly-moving vehicles, is very challenging because of the high mobility, stringent safety requirements, and uncertain airspace environment. Airborne networking is important because of the growing complexity of the National Airspace System with the integration of unmanned aerial vehicles (UAVs). This project develops an innovative new theoretical framework for cyber-physical systems (CPS) to enable airborne networking, which utilizes direct flight-to-to-flight communication for flexible information sharing, safe maneuvering, and coordination of time-critical missions.
This project uses an innovative co-design approach that exploits the mutual benefits of networking and decentralized mobility control in an uncertain heterogeneous environment. The approach departs from the usual perspective that views physical mobility as communication constraints, communication as constraints for decentralized mobility control, and uncertain environment as constraints for both. Instead, approach taken here proactively exploits the constraints, uncertainty, and new structures with information to enable high-performance designs. The features of the co-design such as scalability, fast response, trackability, and robustness to uncertainty advance the core CPS science on decision-making for large-scale networks under uncertainty.
The technological advances developed in this research will contribute to multiple fields, including mobile networking, decentralized control, experiment design, and general real-time decision making under uncertainty for CPS. Technology transfer will be pursued through close collaboration with industries and national laboratories. This novel research direction will also serve as a unique backdrop to inspire the CPS workforce. New teaching materials will benefit the future CPS workforce by equipping them with a knowledge base in networking and control. Broad outreach and dissemination activities that involve undergraduate student societies, K-12 school teaching, and public events, all stemming from the PI's current efforts, will be enhanced.
Tracking Fish Movement with a School of Gliding Robotic Fish
This project is focused on developing the technology for continuously tracking the movement of live fish implanted with acoustic tags, using a network of relatively inexpensive underwater robots called gliding robotic fish. The research addresses two fundamental challenges in the system design: (1) accommodating significant uncertainties due to environmental disturbances, communication delays, and apparent randomness in fish movement, and (2) balancing competing objectives (for example, accurate tracking versus long lifetime for the robotic network) while meeting multiple constraints on onboard computing, communication, and power resources. Fish movement data provide insight into choice of habitats, migratory routes, and spawning behavior. By advancing the state of the art in fish tracking technology, this project enables better-informed decisions for fishery management and conservation, including control of invasive species, restoration of native species, and stock assessment for high-valued species, and ultimately contributes to the sustainability of fisheries and aquatic ecosystems. By advancing the coordination and control of gliding robotic fish networks and enabling their operation in challenging environments such as the Great Lakes, the project also facilitates the practical adoption of these robotic systems for a myriad of other applications in environmental monitoring, port surveillance, and underwater structure inspection. The project enhances several graduate courses at Michigan State University, and provides unique interdisciplinary training opportunities for students including those from underrepresented groups. Outreach activities, including robotic fish demos, museum exhibits, teacher training, and "Follow That Fish" smartphone App, are specifically designed to pique the interest of pre-college students in science and engineering.
The goal of this project is to create an integrative framework for the design of coupled robotic and biological systems that accommodates system uncertainties and competing objectives in a rigorous and holistic manner. This goal is realized through the pursuit of five tightly coupled research objectives associated with the application of tracking and modeling fish movement: (1) developing new robotic platforms to enable underwater communication and acoustic tag detection, (2) developing robust algorithms with analytical performance assurance to localize tagged fish based on time-of-arrival differences among multiple robots, (3) designing hidden Markov models and online model adaptation algorithms to capture fish movement effectively and efficiently, (4) exploring a two-tier decision architecture for the robots to accomplish fish tracking, which incorporates model-predictions of fish movement, energy consumption, and mobility constraints, and (5) experimentally evaluating the design framework, first in an inland lake for localizing or tracking stationary and moving tags, and then in Thunder Bay, Lake Huron, for tracking and modeling the movement of lake trout during spawning. This project offers fundamental insight into the design of robust robotic-physical-biological systems that addresses the challenges of system uncertainties and competing objectives. First, a feedback paradigm is presented for tight interactions between the robotic and biological components, to facilitate the refinement of biological knowledge and robotic strategies in the presence of uncertainties. Second, tools from estimation and control theory (e.g., Cramer-Rao bounds) are exploited in novel ways to analyze the performance limits of fish tracking algorithms, and to guide the design of optimal or near-optimal tradeoffs to meet multiple competing objectives while accommodating onboard resource constraints. On the biology side, continuous, dynamic tracking of tagged fish with robotic networks represents a significant step forward in acoustic telemetry, and results in novel datasets and models for advancing fish movement ecology.