Autonomous sensors that monitor and control physical or environmental conditions.
Event
FIT 2016
The Third  International Workshop on the Future of the Internet of Things (FIT 2016) in conjunction with The 11th International Conference on Future Networks and Communications August 15-18, 2016 | Montreal, Quebec, Canada | https://sites.google.com/site/3rdfitworkshop 
Submitted by Anonymous on April 26th, 2016
Event
EUC 2016
14th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2016)  Paris, France | August 24-26, 2016 | http://euc2016.conferences-events.org/ In conjunction with DCABES 2016 and CSE 2016 by MINES ParisTech - Research University, CentraleSupelec and UFC/FEMTO-ST Institute Introduction
Submitted by Anonymous on April 26th, 2016
Event
FISP 2016
The Second  International Workshop on Future Information Security, Privacy and Forensics for Complex systems (FISP 2016) In Conjunction with the 11th International Conference on Future Networks and Communications (FNC'16)  Topics of Interest: 
Submitted by Anonymous on April 26th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Kang Shin Submitted by Kang Shin on April 25th, 2016
Cells, to carry out many important functions, employ an elaborate transport network with bio-molecular components forming roadways as well as vehicles. The transport is achieved with remarkable robustness under a very uncertain environment. The main goal of this proposal is to understand how biology achieves such functionality and leveraging the knowledge toward realizing effective engineered transport mechanisms for micron sized cargo. The realization of a robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. A key challenge here is to probe the mechanisms often at the nanometer scale as the bio-molecular components are at tens of nanometer scale. The main tools for addressing these challenges come from an engineering perspective that is guided by existing insights from biology. The proposal will bring together researchers from engineering and biology and it provides an integrated environment for students. Moreover, it is known that an impaired transport mechanism can underlie many neurodegenerative maladies, and as the research here pertains to studying intracellular transport, discoveries hold the potential for shedding light on what causes the impaired transport. Robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. Daunting challenges from the underlying highly uncertain and complex environments impede enabling robust and efficient transport systems at micro-scale. Motivated by transport in biological cells, this work proposes a robust and efficient engineered infrastructure for transporting micron/molecular scale cargo using biological constructs. For probing and manipulating the transport network, the proposal envisions strategies for coarse and fine resolution objectives at the global and local scales respectively. At the fine scale of monitoring and control, scarce and expensive physical resources such as high resolution sensors have to be shared for interrogation/control of multiple carriers. In this proposal, the principles for joint control, sensor allocation and scheduling of resources to achieve enhanced performance objectives of a high resolution probing tool, will be developed. A modern control perspective forms an essential strategy for managing multiple objectives. At the global scale, entire traffic will be monitored to arrive at real-time and off-line inferences on traffic modalities. Associated principles for dynamically identifying and tracking clusters of carriers and their importance will be built. This categorization of physical elements and their importance will determine the dynamic allocation of computational resources. Associated study of trade-offs will guide a combined strategy for allocation of computational resources and gathering of information on physical elements. Methods based on the reconstruction of graph topologies for reaching inferences that are suited to dynamically related time trajectories for the transportation infrastructure will be developed. The research proposed is transformative as it will enable a new transport paradigm at the cellular scale, which will also provide unique insights into intracellular transport where it will be possible to investigate multiple factors under the same experimental conditions.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Submitted by Srinivasa Salapaka on April 12th, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Carnegie Mellon University
-
National Science Foundation
Submitted by Zhen Qian on April 11th, 2016
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce. Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Off
WPI
-
National Science Foundation
Cagdas Onal
Taskin Padir Submitted by Taskin Padir on April 6th, 2016
The goal of this project is to facilitate timely retrieval of dynamic situational awareness information from field-deployed nodes by an operational center in resource-constrained uncertain environments, such as those encountered in disaster recovery or search and rescue missions. This is an important cyber physical system problem with perspectives drawn at a system and platform level, as well as at the system of systems level. Technology advances allow the deployment of field nodes capable of returning rich content (e.g., video/images) that can significantly aid rescue and recovery. However, development of techniques for acquisition, processing and extraction of the content that is relevant to the operation under resource constraints poses significant interdisciplinary challenges, which this project will address. The focus of the project will be on the fundamental science behind these tasks, facilitated by validation via both in house experimentation, and field tests orchestrated based on input from domain experts. In order to realize the vision of this project, a set of algorithms and protocols will be developed to: (a) intelligently activate field sensors and acquire and process the data to extract semantically relevant information; (b) formulate expressive and effective queries that enable the near-real-time retrieval of relevant situational awareness information while adhering to resource constraints; and, (c) impose a network structure that facilitates cost-effective query propagation and response retrieval. The research brings together multiple sub-disciplines in computing sciences including computer vision, data mining, databases and networking, and understanding the scientific principles behind information management with compromised computation/communication resources. The project will have a significant broader impact in the delivery of effective situational awareness in applications like disaster response. The recent :World Disaster Report" states that there were more than 1 million deaths and $1.5 trillion in damage from disasters within the past decade; the research has the potential to drastically reduce these numbers. Other possible applications are law enforcement and environmental monitoring. The project will facilitate a strong inter-disciplinary education program and provide both undergraduate and graduate students experience with experimentation and prototype development. There will be a strong emphasis on engaging the broader community and partnering with programs that target under-represented students and minorities.
Off
University of California-Irvine
-
National Science Foundation
Submitted by Sharad Mehrotra on April 5th, 2016
Epilepsy is one of the most common neurological disorders, affecting between 0.4% and 1% of the world's population. While seizures can be controlled in approximately two thirds of newly diagnosed patients through the use of one or more antiepileptic drugs (AEDs), the remainder experience seizures even on multiple medications. The primary impacts of the chronic condition of epilepsy on a patient are a lower quality of life, loss of productivity, comorbidities, and increased risk of death. Epilepsy is an intermittent brain disorder, and in localization-related epilepsy, which is the most common form of epilepsy, one or a few discrete brain areas (the seizure focus or seizure foci) are believed to be responsible for seizure initiation. More recent approaches with implantable electrical stimulation seizure control devices hold value as a therapeutic option for the control of seizures. These devices, directly or indirectly, target the seizure focus and seek to control its expression. In this project we will build a multichannel brain implantable device based on emerging cyber physical system (CPS) principles. This brain implantable CPS device will incorporate key design features to make the device dependable, scalable, composable, certifiable, and interoperable. The device will operate over the life of an animal, or a patient, and continuously record brain activity and stimulate the brain when seizure related activity is detected to abort an impending seizure. Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. The goal of this project is to create a second generation brain-implantable sensing and stimulating device (BISSD) based on emerging CPS principles and practice. The development of a BISSD as a exemplifies several defining aspects that inform and illustrate core CPS principles. First, to meet the important challenge of regulatory approval a composable, scalable and certifiable framework that supports testing in multiple species is proposed. Second, a BISSD must be wholly integrated with the patient and fully cognizant at every instant of brain state, including dynamic changes in both the normal and abnormal expression of brain physiology and therapeutic intervention. Thus, this project seeks a tight conjunction of the cyber solution that must monitor itself and monitor and stimulate the brain using implanted, adaptable, distributed, and networked electrodes, and the physical system which in this case is the intermittently failing human brain. Third, a BISSD must function for an extensive period of time, up to the life of the patient, because each surgery to place and retrieve a BISSD carries an attendant risk. This requirement necessitates a dependable solution, which this project seeks to reliably achieve through both an understanding of the brain's foreign body response and a unique hierarchical fault-tolerant design. Fourth, an advanced salient approaches to acquire, compress, and analyze sensor signals to achieve real-time monitoring and control of seizures is employed. This project should yield a powerful, scalable CPS framework for robust fault-tolerant implantable medical devices with real-time processing that can grow with advances in sensors, sensing modalities, time-series analysis, real-time computation, control, materials, power and knowledge of underlying biology. The USA has a competitive advantage in the control of seizures in medically refractory epilepsy. In the modern era, epilepsy surgery evolved in the USA in the 1970s and spread from here to other parts of the world. Similarly, the USA enjoys a competitive advantage in BISSDs, and success in this effort will enable the USA to build on and maintain this advantage. In addition to epilepsy, advances made here can be expected to benefit the treatment of other neurological and psychiatric brain disorders.
Off
University of North Carolina at Charlotte
-
National Science Foundation
Michael Fiddy
Ryan Adams
Submitted by Anonymous on April 5th, 2016
Event
FTC 2016
Future Technologies Conference 2016 - FTC 2016 6-7 December 2016 | San Francisco, United States | www.SAIConference.com/FTC2016 Sponsored by HPCC Systems FTC attracts researchers, scientists and technologists from some of the top companies, universities, research firms and government agencies from around the world. The conference is predicated on the successful conferences by The Science and Information (SAI) Organization that have been held in the UK since 2013.
Submitted by Anonymous on April 4th, 2016
Subscribe to Wireless Sensing and Actuation