Autonomous sensors that monitor and control physical or environmental conditions.
Event
ICESS2016
The Second International Conference on Electronics and Software Science (ICESS2016)
November 14-16, 2016 | Kagawa University, Takamatsu, Japan | Venue: Takamatsu Sunport Hall Building
Website: http://goo.gl/Nr9Dh8 | E-mail: icess16@sdiwc.net
IMPORTANT DATES
File
DIPDMWC_Poster.pdf
In this CAREER project, the development of wireless underground sensor networks, which carries information through soil, is investigated. More specifically, the application of underground networking in agriculture is considered, where underground sensor networks promise significant reduction in water usage for irrigation. The objectives of this project are to establish the foundations of underground networking for the realization of underground sensor networks, develop hands-on educational tools, and provide experiences to facilitate the dissemination of these techniques to a larger audience including students and farmers.
Communication performance in underground settings is significantly affected by the variations in soil conditions. Hence, the research activities are focused on revisiting the concepts of connectivity and interference under the influence of environmental factors such as soil composition, soil moisture, and depth. Moreover, a theoretical framework is developed to capture the spatial and temporal correlations in soil moisture for underground sensor networks, enabling the development of environment-aware communication protocols. The insights from these analyses are exploited to develop event-based cross-layer communication platforms that adapt to the environment in an energy efficient manner. Finally, an agricultural underground sensor network testbed is developed to evaluate and highlight the outcomes of this research. The educational components include bringing wireless sensor networking to the class, developing an interactive cyber-physical networking lab, and providing hands-on experiences for "little farmers".
The realization of the underground networking techniques has the potential to transform the agriculture industry, as well as a broad range of applications including border patrol, perimeter surveillance, and toxic material monitoring.
Off
University of Nebraska-Lincoln
-
National Science Foundation
Event
PETRA 2016
9th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2016)
The PETRA conference is a highly interdisciplinary conference that focuses on computational and engineering approaches to improve the quality of life and enhance human performance in a wide range of settings, in the workplace, at home, in public spaces, urban environments, and other.
This project explores balancing performance considerations and power consumption in cyber-physical systems, through algorithms that switch among different modes of operation (e.g., low-power/high-power, on/off, or mobile/static) in response to environmental conditions. The main theoretical contribution is a computational, hybrid optimal control framework that is connected to a number of relevant target applications where physical modeling, control design, and software architectures all constitute important components. The fundamental research in this program advances state-of-the-art along four different dimensions, namely (1) real-time, hybrid optimal control algorithms for power management, (2) power-management in mobile sensor networks, (3) distributed power-aware architectures for infrastructure management, and (4) power-management in embedded multi-core processors.
The expected outcome, which is to enable low-power devices to be deployed in a more effective manner, has implications on a number of application domains, including distributed sensor and communication networks, and intelligent and efficient buildings. The team represents both a research university (Georgia Institute of Technology) and an undergraduate teaching university (York College of Pennsylvania) in order to ensure that the educational components are far-reaching and cut across traditional educational boundaries. The project involves novel, inductive-based learning modules, where graduate students team with undergraduate researchers.
Off
Hampden-Sydney College
-
National Science Foundation
Submitted by Patrick Martin on December 22nd, 2015
A wide range of health outcomes is affected by air pollution. In March 2014 the World Health Organization (WHO) released a report that in 2012 alone, a staggering 7 million people died as a result of air pollution exposure, one in eight of total global deaths. A major component of this pollution is airborne particulate matter, with approximately 50 million Americans have allergic diseases.
This project will develop and field the first integrated IoT in-situ sensor package tracking pollution and pollen to provide airborne particulate mapping for Chattanooga. Longer term it is hoped that the data collection approach and initial visualization tools developed in Chattanooga can be used to support a nationwide, open access dissemination platform on the order of Google's StreetView, but called PollutionView. Such scaling of the project's pilot results through a PollutionView tool will contribute significantly to a transformation of the Environmental Public Health field in the United States. The project involves real-time big data analysis at a fine-grain geographic level. This will involve trades with sensing and computing especially if the sensor package is to be deployed at scale. The project will help determine if real-time allergen collection and visualization can improve health and wellness. Thus, this project will combine Cyber Physical Systems (CPS) and gigabit networks to address major health concerns due to air pollution. A working demonstration of this project will be presented during the Global City Teams meeting in June 2015 with an update in June 2016.
Airborne particulate matter particularly affects the citizens of Chattanooga, TN. The objectives of this project are twofold: first, to develop and deploy an array of Internet of Things (IoT) in-situ sensors within Chattanooga capable of comprehensively characterizing air quality in real time, including location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S), and the abundance of airborne particulates (10-40 µm), both pollen-sized and smaller PM2.5 (<2.5 µm) particles; and second, to have a pollen validation campaign by deploying an in-situ pollen air sampler in Chattanooga to identify specific pollen types.
Off
University of Texas at Dallas
-
National Science Foundation
Submitted by David Lary on December 22nd, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles.
The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
SUNY at Stony Brook
-
National Science Foundation
The concept of a "smart city" is ubiquitous with data; however, most urban data today lacks the spatial and temporal resolution to understand processes that unfold on timescales of seconds or minutes, such as the dispersion of pollutants. A better understanding of these dynamics can provide information to residents, cyclists or pedestrians who may wish to use air quality data as they navigate urban spaces. This project leverages existing street furniture, integrating air quality and environmental sensors into commercial solar powered, networked waste stations. Sensors embedded in BigBelly waste stations in Chicago and other cities will collect data that will allow researchers to explore critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. The partnership with BigBelly, with nearly 30,000 waste stations in place globally, provides a channel through which sensors can be deployed in many cities.
The project brings together computer science, cyber-physical systems, distributed systems, and sensor systems expertise to explore technical and societal challenges and opportunities of urban-scale embedded systems in the public sphere, initially related to understanding and ultimately managing urban air quality. Sensors embedded in BigBelly waste stations in Chicago and other cities will explore (1) the spatial and temporal dynamics of air quality in urban canyons, informing the sensor network resolution needed to drive traffic change policies and to provide healthy air quality routing information to cyclists and pedestrians; and (2) how urban topology (natural and built) affects these dynamics and associated required measurement resolutions. These are critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. Critical challenges include (1) power management with respect to sensor sampling, in-situ processing, and transmission; (2) ensuring data quality; and (3) providing data in forms that are actionable and understandable to policy makers and the general public. All data will be published in near-real time with web-based analysis tools for use by scientists, educators, policy makers, and residents, and with application programming interfaces (API's) for application development. By developing an open source, readily deployed urban embedded systems infrastructure leveraging a widely deployed commercial platform, the project can enable science, education, and outreach in many cities, national parks, and educational institutions worldwide.
Off
University of Chicago
-
National Science Foundation
It is expected that in 25 years, Americans who are 65 years or older will account for about 20% of the whole population. As smart cities are also expected to become a reality within the same timeframe, starting to address the needs and concerns of such a large group becomes an essential part of the design of a future smart city. Here we specifically address the mobility needs of the elderly and those with limited means of transportation. We consider multiple small vehicle options that might provide on-demand or scheduled means of door-to-door transportation.
The NSF-EAGER project focuses on examining basic research aspects of sensing and tracking potential sources of vehicle pedestrian collisions in densely crowded situations and socially acceptable distance for collision avoidance. The project will be providing input to the OSU/Columbus Global City Teams Challenge activity SMOOTH (Smart Mobile Operation: OSU Transportation Hub) and related demonstrations and help develop a working system.
The key innovative contributions of this EAGER project are: development of a unifying framework for sensing and tracking in mixed traffic situations, acceptable automated driving within pedestrian zones, and evasive road maneuvering to avoid colliding with conventional human driven vehicles.
Off
Ohio State University
-
National Science Foundation
Bilin Aksun-Guvenc
Submitted by Umit Ozguner on December 22nd, 2015
Human-in-the-loop control strategies in which the user performs a task better, and feels more confident to do so, is an important area of research for cyber-physical systems. Humans are very adept at learning to control complex systems, particularly those with non-intuitive kinematic constraints (e.g., cars, bicycles, wheelchairs, steerable needles). With the advent of cyber-physical systems, (physical systems integrated with cyber control layer), human control is no longer constrained to system inputs. Users can also control system outputs through a number of different teleoperation mappings. Given all this flexibility, what is the most intuitive way for a human user to control an arbitrary system and how is intuitiveness quantified?
The project focuses on human-in-the-loop control for medical needles, which steer with bicycle-like kinematics. These needles could be used in a variety of medical interventions including tissue biopsy, tumor ablation, abscess drainage, and local drug delivery. We have explored a variety of teleoperation mappings for human control of these steerable needles; yet, we have found inconsistencies between objective performance metrics (e.g., task time and error), and post-experimental surveys on comfort or ease-of use. Users occasionally report a preference for control mappings, which objectively degrade performance, and vice versa. It is important to measure the real-time engagement of the user with the physical system in order to capture the nuances of how different control mappings affect physical effort, mental workload, distraction, drowsiness, and emotional response. Physiological sensors such as electroencephalography (EEG), galvanic skin response (GSR), and electromyography (EMG), can be used to provide these real-time measurements and to quantitatively classify the intuitiveness of new teleoperation algorithms.
Broader Impacts: Intuitive and natural human-in-the-loop control interfaces will improve human health and well being, through applications in surgery and rehabilitation. The results of this study will be disseminated publicly on the investigator's laboratory website, a conference workshop, and a new medical robotics seminar to be held jointly between UT Dallas and UT Southwestern Medical Center. Outreach activities, lab tours, and mentoring of underrepresented students at all levels, will broaden participation in STEM. Additionally, the proximity of the investigator?s hospital-based lab to medical professionals will engage non-engineers in design and innovation
Off
University of Texas at Dallas
-
National Science Foundation
Submitted by Ann Majewicz on December 22nd, 2015