Coordinating clocks in multiple devices to function simultaneously.
Event
NIST CPS PWG
NIST Cyber-Physical Systems Public Working Group
What are Cyber-Physical Systems or CPS?
Is a CPS any engineered system with a microprocessor?
Do all CPS need to be connected to the internet?
Are there a set of basic functions and architectural elements common to all CPS?
You are invited to join us in answering these questions and charting the path to the future.
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California at Los Angeles
-
National Science Foundation
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California at Santa Barbara
-
National Science Foundation
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
Carnegie Mellon University
-
National Science Foundation
The aim of this project is to lay down the foundations of a novel approach to real-time control of networked cyber-physical systems (CPS) that leverages their cooperative nature. Most networked controllers are not implementable over embedded digital computer systems because they rely on continuous time or synchronous executions that are costly to enforce. These assumptions are unrealistic when faced with the cyber-physical world, where the interaction between computational and physical components is multiplex, information acquisition is subject to error and delay, and agent schedules are asynchronous. Even without implementation obstacles, the periodic availability of information leads to a wasteful use of resources. Tuning controller execution to the task at hand offers the potential for great savings in communication, sensing, and actuation. The goal of this project is to bring this opportunity to fruition by combining event- and self-triggered control ideas into a unified approach that inherits the best of both models. The key conceptual novelty is for agents to make promises to one another about their future states and warn each other if they later decide to break them. The information provided by promises allows agents to autonomously determine when fresh information is needed, resulting in an efficient network performance.
Networked cyber-physical systems are transforming the way society interacts with the physical world. Advances in this field are extending the range of human capabilities in an increasing number of areas with high societal and economic impact, such as smart energy, intelligent transportation, advanced manufacturing, health technology, and the environment. This project contributes to the science and technology of cyber-physical systems by developing a novel principled approach for networked systems to operate efficiently and cope with the sources of uncertainty present in real-word applications. The potential benefits are real-time operation in a wide range of application domains of cooperative cyber-physical systems with a superior level of efficiency and robustness than currently possible. The project promises to contribute to the training of a new generation of engineering students at UC San Diego with the skills necessary to deal with this type of multi-faceted systems and applications. The plan includes undergraduate student involvement in research, graduate supervision and curriculum development, outreach to high-school students, retention of minorities in STEM disciplines, and broad dissemination activities.
Off
University of California at San Diego
-
National Science Foundation
Submitted by Jorge Cortes on December 18th, 2015
Event
IPDPS 2016
30th IEEE International Parallel & Distributed Processing Symposium
PDPS is an international forum for engineers and scientists from around the world to present their latest research findings in all aspects of parallel computation. In addition to technical sessions of submitted paper presentations, the meeting offers workshops, tutorials, and commercial presentations & exhibits.
The objective of this research is to prove that cyber-physical systems are safe before they are deployed. The approaches the research investigates are extensions of approaches used to test communications protocols. The problems with cyber-physical systems are that 1) they are much more complicated than communications protocols, 2) time is a more critical component of these systems, and 3) in a competitive environment there are likely to be many implementations that must interoperate.
The complexity of communications protocols is reduced by using a layered architecture. Each layer provides a well defined service to the next layer. This research is developing multi-dimensional architectures that reflect the different ways that the cyber-physical system interacts with the physical world. The techniques are evaluated on a driver-assisted merge protocol. An architecture for the merge protocol has four dimensions organized as stacks for communications, external sensors, vehicle monitoring and control, and timing. This architecture will also be useful during standardization.
Timing increases verification complexity by increasing the number of potential execution paths. The research conducted in this project explores how to reduce the number of paths by synchronizing clocks and using simultaneous operations. This approach is reasonable because of the timing accuracy now available with GPS. A two step verification process is used that creates an unambiguous model of the cyber-physical system, first proving that the model is safe, then checking that each implementation conforms to the model. This reduces the number and cost of tests for a three-party merge protocol. Specifically, assuming there are N implementation versions for different manufacturers and models, this approach reduces the number of necessary interaction tests, which would be cubic in N, to a single model verification and N conformance tests.
Off
Columbia University
-
National Science Foundation
Nicholas Maxemchuk
Submitted by Nicholas Maxemchuk on August 27th, 2015
Event
GTTSE 2015
The 5th Summer School on Grand Timely Topics in Software Engineering (GTTSE)
Registration is open for participants!
http://gttse.wikidot.com/2015:registration
There is a students' workshop to which one may submit.
http://gttse.wikidot.com/2015:students-workshop
List of speakers
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grid, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California-San Diego
-
National Science Foundation
Rajesh Gupta
Submitted by Rajesh Gupta on November 12th, 2014
Event
SYNCHRON'14
International Open Workshop on Synchronous Programming
Centre CNRS Paul Langevin, Aussois, France
The 21st International Open Workshop on Synchronous Programming
(SYNCHRON'14) will be held in the Alps ski resort of Aussois, France,
between November 30 and December 4, 2014.