Paulo Tabuada was born in Lisbon, Portugal, one year after the Carnation Revolution. He received his "Licenciatura" degree in Aerospace Engineering from Instituto Superior Tecnico, Lisbon, Portugal in 1998 and his Ph.D. degree in Electrical and Computer Engineering in 2002 from the Institute for Systems and Robotics, a private research institute associated with Instituto Superior Tecnico. Between January 2002 and July 2003 he was a postdoctoral researcher at the University of Pennsylvania. After spending three years at the University of Notre Dame, as an Assistant Professor, he joined the Electrical Engineering Department at the University of California, Los Angeles, where he established and directs the Cyber-Physical Systems Laboratory. Paulo Tabuada's contributions to cyber-physical systems have been recognized by multiple awards including the NSF CAREER award in 2005, the Donald P. Eckman award in 2009 and the George S. Axelby award in 2011. In 2009 he co-chaired the International Conference Hybrid Systems: Computation and Control (HSCC'09) and in he was program co-chair for the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys'12). He currently serves as associate editor for the IEEE Transactions on Automatic Control and his latest book, on verification and control of hybrid systems, was published by Springer in 2009.
Abstract
This Rapid Response Research (RAPID) project is developing technology for ubiquitous event reporting and data gathering on the 2010 oil spill in the Gulf of Mexico and its ecological impacts. Traditional applications for monitoring disasters have relied on specialized, tightly-coupled, and expensive hardware and software platforms to capture, aggregate, and disseminate information on affected areas. We lack science and technology for rapid and dependable integration of computing and communication technology into natural and engineered physical systems, cyber-physical systems (CPS).
Performance Period: 08/15/2010 - 07/31/2012
Institution: Vanderbilt University
Sponsor: National Science Foundation
Award Number: 1047792
Abstract
This Rapid Response Research (RAPID) project is developing technology for ubiquitous event reporting and data gathering on the 2010 oil spill in the Gulf of Mexico and its ecological impacts. Traditional applications for monitoring disasters have relied on specialized, tightly-coupled, and expensive hardware and software platforms to capture, aggregate, and disseminate information on affected areas. We lack science and technology for rapid and dependable integration of computing and communication technology into natural and engineered physical systems, cyber-physical systems (CPS).
Performance Period: 08/15/2010 - 07/31/2012
Institution: University of Alabama Tuscaloosa
Sponsor: National Science Foundation
Award Number: 1047780
Abstract
This Rapid Response Research (RAPID) project is developing technology for ubiquitous event reporting and data gathering on the 2010 oil spill in the Gulf of Mexico and its ecological impacts. Traditional applications for monitoring disasters have relied on specialized, tightly-coupled, and expensive hardware and software platforms to capture, aggregate, and disseminate information on affected areas. We lack science and technology for rapid and dependable integration of computing and communication technology into natural and engineered physical systems, cyber-physical systems (CPS).
Performance Period: 08/15/2010 - 07/31/2012
Institution: Virginia Polytechnic Institute and State University
Sponsor: National Science Foundation
Award Number: 1047753
Abstract
The objective of this proposal is to bring together faculty and students from the U.S. Southwest area through a workshop on theoretical and applied topics pertaining to cyber-physical systems (CPS). The target U.S. Southwest area, which comprises the states of Arizona, Colorado, New Mexico, Nevada, and Utah, has numerous active research projects of interest to the global CPS community.
Performance Period: 08/01/2010 - 07/31/2011
Institution: University of Arizona
Sponsor: National Science Foundation
Award Number: 1041704
Abstract
Cyber Physical Systems (CPS) are ones that integrate computation, communication and storage capabilities with the monitoring and/or control of the physical and engineering systems. Such systems must be operated safely, dependably, securely, efficiently and in real-time. CPS research is expected to have significant technical, economic and societal impacts in the near future in multiple sectors including transportation systems, smart grids, energy-aware buildings, agriculture, water/sewage treatment, environmental management and manufacturing systems.
Performance Period: 06/01/2010 - 05/31/2012
Institution: Carnegie-Mellon University
Sponsor: National Science Foundation
Award Number: 1036440
Abstract
The objective of this research is the design of innovative routing, planning and coordination strategies for robot networks, and their application to oceanography. The approach is organized in three synergistic thrusts: (1) the application of queueing theory and combinatorial techniques to networked robots performing sequential tasks, (2) the design of novel distributed optimization and coordination schemes relying only on asynchronous and asymmetric communication, (3) the design of practical routing and coordination algorithms for the USC Networked Aquatic Platforms.
Performance Period: 09/15/2010 - 08/31/2015
Institution: University of California-Santa Barbara
Sponsor: National Science Foundation
Award Number: 1035917
Abstract
The objective of this research is to develop the theoretical foundations of robust cyber-physical systems. Robustness is the property ensuring that slight perturbations in the cyber, physical, or in the interaction between the cyber and the physical components, e.g., noise in sensor measurements, causes only slight changes in the system execution.
Paulo Tabuada
Performance Period: 09/15/2010 - 08/31/2014
Institution: University of California-Los Angeles
Sponsor: National Science Foundation
Award Number: 1035916
Abstract
The objective of this research is to check correct functioning of cyber-physical systems during their operation. The approach is to continuously monitor the system and raise an alarm when the system seems to exhibit an erroneous behavior. Correct functioning of cyber-physical systems is of critical importance. This is more so in safety critical systems like medical, automotive and other applications. The approach employs hybrid automata for specifying the property to be monitored and for modeling the system behavior.
Performance Period: 10/01/2010 - 09/30/2015
Institution: University of Illinois at Chicago
Sponsor: National Science Foundation
Award Number: 1035914
Abstract
The objective of this research is to develop methods and tools for a multimodal and multi-sensor assessment and rehabilitation game system called CPLAY for children with Cerebral Palsy (CP). CPLAY collects and processes multiple types of stimulation and performance data while a child is playing. Its core has a touch-screen programmable game that has various metrics to measure delay of response, score, stamina/duration, accuracy of motor/hand motion.
Performance Period: 09/15/2010 - 02/29/2016
Institution: University of Texas at Arlington
Sponsor: National Science Foundation
Award Number: 1035913
Abstract
The objective of this research is to establish a foundational framework for smart grids that enables significant penetration of renewable DERs and facilitates flexible deployments of plug-and-play applications, similar to the way users connect to the Internet. The approach is to view the overall grid management as an adaptive optimizer to iteratively solve a system-wide optimization problem, where networked sensing, control and verification carry out distributed computation tasks to achieve reliability at all levels, particularly component-level, system-level, and application level.
Performance Period: 09/15/2010 - 08/31/2014
Institution: Arizona State University
Sponsor: National Science Foundation
Award Number: 1035906