Monitoring and control of cyber-physical systems.
The wide-area measurement systems technology using Phasor Measurement Units (PMUs) has been regarded as the key to guaranteeing stability, reliability, state estimation, and control of next-generation power systems. However, with the exponentially increasing number of PMUs, and the resulting explosion in data volume, the design and deployment of an efficient wide-area communication and computing infrastructure is evolving as one of the greatest challenges to the power system and IT communities. The goal of this NSF CPS project is to address this challenge, and construct a massively deployable cyber-physical architecture for wide-area control that is fast, resilient and cost-optimal (FRESCO). The FRESCO grid will consist of a suite of optimal control algorithms for damping oscillations in power flows and voltages, implemented on top of a cost-effective and cyber-secure distributed computing infrastructure connected by high-speed wide-area networks that are dynamically programmable and reconfigurable. The value of constructing FRESCO is twofold (1) If a US-wide communication network capable of transporting gigabit volumes of PMU data for wide-area control indeed needs to be implemented over the next five years then power system operators must have a clear sense of how various forms of delays, packet losses, and security threats affect the stability of these control loops. (2) Moreover, such wide-area communication must be made economically feasible and sustainable via joint decision-making processes between participating utility companies, and testing how controls can play a potential role in facilitating such economics. Currently, there is very limited insight into how the PMU data transport protocols may lead to a variety of such delay patterns, or dictate the economic investments. FRESCO will answer all of these questions, starting from small prototypical grid models to those with tens of thousands of buses. Our eventual goal will be to make FRESCO fully open-source for Transition to Practice (TTP). We will work with two local software companies in Raleigh, namely Green Energy Corporation and Real-Time Innovations, Inc. to develop a scalable, secure middleware using Data-Distribution Service (DDS) technology. Thus, within the scope of the project, we also expect to enrich the state-of-the-art cloud computing and networking technologies with new control and management functions. From a technical perspective, FRESCO will answer three main research questions. First, can wide-area controllers be co-designed in sync with communication delays to make the closed-loop system resilient and delay-aware, rather than just delay-tolerant This is particularly important, as PMU data, in most practical scenarios, will have to be transported over a shared resource, sharing bandwidth with other ongoing applications, giving rise to not only transport delays, but also significant delays due to queuing and routing. Advanced ideas of arbitrated network control designs will be used to address this problem. The second question we address is for cost. Given that there are several participants in this wide-area control, how much is each participant willing to pay in sharing the network cost with others for the sake of supporting a system-wide control objective compared to its current practice of opting for selfish feedback control only Ideas from cooperative game theory will be used to investigate this problem. The final question addresses security how can one develop a scientific methodology to assess risks, and mitigate security attacks in wide-area control? Statistical and structural analysis of attack defense modes using Bayesian and Markov models, game theory, and discrete-event simulation will be used to address this issue. Experimental demos will be carried out using the DETER-WAMS network, showcasing the importance of cyber-innovation for the sustainability of energy infrastructures. Research results will be broadcast through journal publications, and jointly organized graduate courses between NCSU, MIT and USC.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Submitted by Anuradha Annaswamy on March 2nd, 2016
Event
NVMSA 2016
The 4th IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA) Non-Volatile memory (NVM) technologies have demonstrated great potentials on improving many aspects of present and future memory hierarchy, offering high integration density, larger capacity, zero standby power and good resilience to soft errors. The recent research progress of various NVMs, e.g., NAND flash, PCM, STT-RAM, RRAM, FeRAM, etc., have drawn tremendous attentions from both academy and industry.
Submitted by Anonymous on February 15th, 2016

The National Institute of Standards and Technology (NIST) launched the 2016 Global City Teams Challenge (GCTC; see http://www.nist.gov/cps/sagc.cfm) with a kickoff meeting on November 12-13, 2015, in Gaithersburg, MD. This meeting brought together city planners and representatives from technology companies, academic institutions, and non-profits with the aim of fostering teams that will contribute to an overall vision for Smart and Connected Communities (S&CC) - effectively integrating networked information systems, sensing and communication devices, data sources, decision-making, and physical infrastructure to transform communities by improving quality of life, environmental health, social well-being, educational achievement, or overall economic growth and stability.

NIST's GCTC builds upon the National Science Foundation's (NSF) longstanding investments in cyber-physical systems (CPS). NSF established the CPS program in 2008 to develop the principles, methodologies, and tools needed to deeply embed computational intelligence, communications, and control, along with new mechanisms for sensing, actuation, and adaptation, into physical systems. The NSF CPS program, which today includes the participation of the U.S. Department of Homeland Security, U.S. Department of Transportation, National Aeronautics and Space Administration, and National Institutes of Health, has funded a strong portfolio of projects that together have pushed the boundaries of fundamental knowledge and systems engineering in core science and technology areas needed to support an ever-growing set of application domains. CPS investments are enabling systems that are central to emerging S&CC infrastructure and services, including in areas such as intelligent transportation systems (ground, aviation, and maritime), building control and automation, advanced manufacturing (including cyber-manufacturing), healthcare and medical devices, and the burgeoning Internet of Things (IoT). Dependability, security, privacy, and safety continue to be central priorities for the program in pursuing the vision of a world in which CPS dramatically improve quality of life. Along the way, the CPS program has also nurtured a vibrant CPS research community.

With this Dear Colleague letter (DCL), NSF is announcing its intention to fund EArly-Concept Grants for Exploratory Research (EAGER) proposals to support NSF researchers participating in the NIST GCTC, with the goal of pursuing novel research on the effective integration of networked computing systems and physical devices that will have significant impact in meeting the challenges of Smart and Connected Communities. Researchers must be members of, or be seeking to establish, GCTC teams that build upon the results of previous or active NSF-funded projects, and must provide evidence of active team membership and participation as part of the submission. [Note that, while this DCL is aligned with NSF’s broader efforts in Smart and Connected Communities (see http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf15120), a key requirement for this DCL is active participation in a GCTC team.] Proposals should emphasize the fundamental research inherent to the real-world problems being addressed; the manner in which the proposed solutions will be adopted by one or more local communities; and the potential challenges with respect to both research and deployment. Successful proposals will quantify the magnitude of potential societal impacts; and will result in transformative, long-term benefits rather than incremental advances. Finally, proposals must address why the work is appropriate for EAGER funding (see details below), including what key risks will be mitigated to facilitate future high-reward advances and why the timing of the project will maximize the potential for success.

The deadline for submission of EAGERs is April 1, 2016, but earlier submissions are encouraged, and decisions will be made on a first-come, first-serve basis.

Submission of EAGER proposals will be via Fastlane or Grants.gov. EAGER submissions should follow the NSF's Grant Proposal Guide (GPG) II.D.2 (see http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg). (As noted in the GPG, EAGER is a funding mechanism for supporting exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches. This work may be considered especially "high-risk/high-reward," for example, in the sense that it involves radically different approaches, applies new expertise, or engages novel disciplinary or interdisciplinary perspectives.)

An investigator may be included in only one submission in response to this DCL; if more than one is submitted, only the first one will be considered.

For further information, please contact the cognizant CPS program directors:

  • David Corman, CISE/CNS/CPS, dcorman@nsf.gov
  • Kishan Baheti, ENG/ECCS/EPCN, rbaheti@nsf.gov
  • Sylvia Spengler, CISE/IIS/CPS, sspengle@nsf.gov
  • Gurdip Singh, CISE/CNS/CSR, gsingh@nsf.gov
General Announcement
Not in Slideshow
Submitted by Anonymous on February 12th, 2016
Event
RoboCup 2016
RoboCup International Symposium 2016 OVERVIEW The 20th Annual RoboCup International Symposium will be held in conjunction with RoboCup 2016. The Symposium is a primary venue for presentation and discussion of scientific contributions to a variety of research areas related to all RoboCup divisions (RoboCup Soccer, RoboCup Rescue, RoboCup at Home, RoboCup at Work, and RoboCup Junior). Its scope includes, but is not restricted to, research and educational activities in robotics and artificial intelligence.
Submitted by Anonymous on January 27th, 2016
Cyber-physical systems (CPSs) allow computer systems to monitor and control the physical world in a new way that could revolutionize many areas of science and engineering. However, they are often too complex for non-specialists to use. The aim of this work is to develop new technology to manage this complexity, enabling scientists and engineers to use CPSs just like other tools and instruments. This research takes a comprehensive approach to macroprogramming -- the task of programming an entire network of devices as a single, programmable substrate. This research exploits global, network-wide information about a CPS provided by a macroprogram to improve traditional software engineering techniques such as testing, debugging, analysis, and optimization. New techniques are being developed that use global information to optimize system performance, automatically generate test cases, and reduce the state space for analysis. This work is developing new programming abstractions that allow the separation of the application logic from quality-of-service requirements and hardware requirements, improving code portability and reuse. This research will produce a comprehensive development environment for CPSs called MacroLab. The new tools developed will greatly simplify the process of their programming and make them more accessible to non-experts. By taking a holistic view of the network and its software, MacroLab will manage a range of complex, interacting issues that would be extremely difficult to manage by hand. MacroLab will be tested pilot studies, including environmental monitoring. A graduate CPS course will be developed. MacroLab will be used for course experiments and in senior capstone projects.
Off
University of Virginia
-
National Science Foundation
Submitted by Cameron Whitehouse on January 11th, 2016
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications. The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics. The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Aaron Ames Submitted by Aaron Ames on December 22nd, 2015
This project explores balancing performance considerations and power consumption in cyber-physical systems, through algorithms that switch among different modes of operation (e.g., low-power/high-power, on/off, or mobile/static) in response to environmental conditions. The main theoretical contribution is a computational, hybrid optimal control framework that is connected to a number of relevant target applications where physical modeling, control design, and software architectures all constitute important components. The fundamental research in this program advances state-of-the-art along four different dimensions, namely (1) real-time, hybrid optimal control algorithms for power management, (2) power-management in mobile sensor networks, (3) distributed power-aware architectures for infrastructure management, and (4) power-management in embedded multi-core processors. The expected outcome, which is to enable low-power devices to be deployed in a more effective manner, has implications on a number of application domains, including distributed sensor and communication networks, and intelligent and efficient buildings. The team represents both a research university (Georgia Institute of Technology) and an undergraduate teaching university (York College of Pennsylvania) in order to ensure that the educational components are far-reaching and cut across traditional educational boundaries. The project involves novel, inductive-based learning modules, where graduate students team with undergraduate researchers.
Off
Hampden-Sydney College
-
National Science Foundation
Patrick Martin Submitted by Patrick Martin on December 22nd, 2015
The project investigates a formal verification framework for artificial pancreas (AP) controllers that automate the delivery of insulin to patients with type-1 diabetes (T1D). AP controllers are safety critical: excessive insulin delivery can lead to serious, potentially fatal, consequences. The verification framework under development allows designers of AP controllers to check that their control algorithms will operate safely and reliably against large disturbances that include patient meals, physical activities, and sensor anomalies including noise, delays, and sensor attenuation. The intellectual merits of the project lie in the development of state-of-the-art formal verification tools, that reason over mathematical models of the closed-loop including external disturbances and insulin-glucose response. These tools perform an exhaustive exploration of the closed loop system behaviors, generating potentially adverse situations for the control algorithm under verification. In addition, automatic techniques are being investigated to help AP designers improve the control algorithm by tuning controller parameters to eliminate harmful behaviors and optimize performance. The broader significance and importance of the project are to minimize the manual testing effort for AP controllers, integrate formal tools in the certification process, and ultimately ensure the availability of safe and reliable devices to patients with type-1 diabetes. The framework is made available to researchers who are developing AP controllers to help them verify and iteratively improve their designs. The team is integrating the research into the educational mission by designing hands-on courses to train undergraduate students in the science of Cyber-Physical Systems (CPS) using the design of AP controllers as a motivating example. Furthermore, educational material that explains the basic ideas, current challenges and promises of the AP concept is being made available to a wide audience that includes patients with T1D, their families, interested students, and researchers. The research is being carried out collaboratively by teams of experts in formal verification for Cyber-Physical Systems, control system experts with experience designing AP controllers, mathematical modeling experts, and clinical experts who have clinically evaluated AP controllers. To enable the construction of the verification framework from the current state-of-the-art verification tools, the project is addressing major research challenges, including (a) building plausible mathematical models of disturbances from available clinical datasets characterizing human meals, activity patterns, and continuous glucose sensor anomalies. The resulting models are integrated in a formal verification framework; (b) simplifying existing models of insulin glucose response using smaller but more complex delay differential models; (c) automating the process of abstracting the controller implementation for the purposes of verification; (d) producing verification results that can be interpreted by control engineers and clinical researchers without necessarily understanding formal verification techniques; and (e) partially automating the process of design improvements to potentially eliminate severe faults and improve performance. The framework is evaluated on a set of promising AP controller designs that are currently under various stages of clinical evaluation.
Off
University of Texas at El Paso
-
National Science Foundation
Submitted by Fraser Cameron on December 22nd, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
SUNY at Stony Brook
-
National Science Foundation
Submitted by Shan Lin on December 22nd, 2015
Water is a critical resource and a lifeline service to communities worldwide; the generation, treatment, distribution and maintenance of water workflows is typically managed by local governments and water districts. Recent events such as water supply disruptions caused by Hurricane Sandy in 2012 and the looming California drought crisis clearly indicate society's dependence on critical lifeline services such as water and the far-reaching impacts that its disruption can cause. Over the years, these critical infrastructures have become more complex and often more vulnerable to failures. The ability to view water workflows as a community wide cyber-physical system (CPS) with multiple levels of observation/control and diverse players (suppliers, distributors, consumers) presents new possibilities. Designing robust water systems involves a clear understanding of the structure, components and operation of this CPS system and how community infrastructure dynamics (e.g. varying demands, small/large disruptions) impact lifeline service availabilities and how service level decisions impact infrastructure control. The proposal emphasizes a new approach to exploring engineering systems that will result in substantial advances in the understanding of lifeline systems and approaches to make them adaptive and resilient. Building resilience into urban lifelines raises a number of monumental challenges including identifying the aspects of systems that can be observed/sensed and adapted and to developing general principles that can guide adaptation. The key idea is to develop methodologies to understand operational performance and resilience issues for real-world community water infrastructures and explore solutions to problems in cyberspace before instantiating them into a physical infrastructure. The effort includes: 1) Developing a flexible modeling framework that captures system needs at multiple levels of temporal and spatial abstraction; 2) Developing real-time algorithms supporting resilience; 3) Designing adaptations for water systems using a data-driven approach; and 4) Demonstrating the important broader impact of the research on critical water system infrastructure at the Global City Technology Challenge and the longer term impact on infrastructure for a resilient control framework.
Off
ImageCat, Inc.
-
National Science Foundation
Submitted by Ronald Eguchi on December 22nd, 2015
Subscribe to Control