Monitoring and control of cyber-physical systems.
Water is a critical resource and a lifeline service to communities worldwide; the generation, treatment, distribution and maintenance of water workflows is typically managed by local governments and water districts. Recent events such as water supply disruptions caused by Hurricane Sandy in 2012 and the looming California drought crisis clearly indicate society's dependence on critical lifeline services such as water and the far-reaching impacts that its disruption can cause. Over the years, these critical infrastructures have become more complex and often more vulnerable to failures. The ability to view water workflows as a community wide cyber-physical system (CPS) with multiple levels of observation/control and diverse players (suppliers, distributors, consumers) presents new possibilities. Designing robust water systems involves a clear understanding of the structure, components and operation of this CPS system and how community infrastructure dynamics (e.g. varying demands, small/large disruptions) impact lifeline service availabilities and how service level decisions impact infrastructure control. The proposal emphasizes a new approach to exploring engineering systems that will result in substantial advances in the understanding of lifeline systems and approaches to make them adaptive and resilient. Building resilience into urban lifelines raises a number of monumental challenges including identifying the aspects of systems that can be observed/sensed and adapted and to developing general principles that can guide adaptation. The key idea is to develop methodologies to understand operational performance and resilience issues for real-world community water infrastructures and explore solutions to problems in cyberspace before instantiating them into a physical infrastructure. The effort includes: 1) Developing a flexible modeling framework that captures system needs at multiple levels of temporal and spatial abstraction; 2) Developing real-time algorithms supporting resilience; 3) Designing adaptations for water systems using a data-driven approach; and 4) Demonstrating the important broader impact of the research on critical water system infrastructure at the Global City Technology Challenge and the longer term impact on infrastructure for a resilient control framework.
Off
University of California at Irvine
-
National Science Foundation
Nalini Venkatasubramanian Submitted by Nalini Venkatasubramanian on December 22nd, 2015
Large-scale applications of cyber-physical systems (CPS) such as commercial buildings with Building Automation System (BAS)-based demand response (DR) can play a key role in alleviating demand peaks and associated grid stress, increased electricity unit cost, and carbon emissions. However, benefits of BAS alone are often limited because their demand peak reduction cannot be maintained long enough without unduly affecting occupant comfort. This project seeks to develop control algorithms to closely integrate battery storage-based DR with existing BAS capabilities. The overarching objective is to expand the building's DR capabilities, providing crucial benefits towards smarter grids, while maintaining appropriate occupant comfort and reducing building ownership cost. This project follows a 2-phase approach towards more effective integration. First, building peak demand forecasting will be added to existing battery dispatch methods. Under electricity tariffs geared towards daily [monthly] peaks, such forecasting could result in the same battery-enabled demand charge (dollars per kW) savings as previously demonstrated storage dispatch algorithms. However, supply charges (dollars per kWh) and associated emissions would be reduced because battery dispatch would be geared towards reducing only the biggest daily [monthly] peaks while not incurring roundtrip charging losses on more moderate peaks. Phase 2 builds on phase 1, adding closer integration and systematic optimization to the algorithms for forecasting, BAS, and battery dispatch. This integration will allow the integrated CPS to manipulate the BAS process itself, thereby optimizing, e.g., light dimming, temperature set-points, and pre-cooling in unison with battery-based DR. Feasibility and future promise of such experimental control methodology will be measured by a multi-objective cost function which includes demand and energy charges, savings from DR participation, storage equipment capital expenditure (required size, achievable lifetime), and occupant comfort. Integrating BAS- with battery-based DR is nascent, mostly because the peak demand forecast, BAS, and storage dispatch algorithms that such a CPS requires have yet to be developed. This project seeks to lay important methodological groundwork for such applications, thus furthering commercial buildings' role in the Internet of Things. The PI's participation in the NIST/US-Ignite Global City Team Challenge (with partners Urban Electric Power, Siemens Corporate Technology, City University of New York, and NY-Best) furthers public engagement with such technology and will help catalyze its translation into the commercial space.
Off
Columbia University
-
National Science Foundation
Submitted by Christoph Meinrenken on December 22nd, 2015
Human-in-the-loop control strategies in which the user performs a task better, and feels more confident to do so, is an important area of research for cyber-physical systems. Humans are very adept at learning to control complex systems, particularly those with non-intuitive kinematic constraints (e.g., cars, bicycles, wheelchairs, steerable needles). With the advent of cyber-physical systems, (physical systems integrated with cyber control layer), human control is no longer constrained to system inputs. Users can also control system outputs through a number of different teleoperation mappings. Given all this flexibility, what is the most intuitive way for a human user to control an arbitrary system and how is intuitiveness quantified? The project focuses on human-in-the-loop control for medical needles, which steer with bicycle-like kinematics. These needles could be used in a variety of medical interventions including tissue biopsy, tumor ablation, abscess drainage, and local drug delivery. We have explored a variety of teleoperation mappings for human control of these steerable needles; yet, we have found inconsistencies between objective performance metrics (e.g., task time and error), and post-experimental surveys on comfort or ease-of use. Users occasionally report a preference for control mappings, which objectively degrade performance, and vice versa. It is important to measure the real-time engagement of the user with the physical system in order to capture the nuances of how different control mappings affect physical effort, mental workload, distraction, drowsiness, and emotional response. Physiological sensors such as electroencephalography (EEG), galvanic skin response (GSR), and electromyography (EMG), can be used to provide these real-time measurements and to quantitatively classify the intuitiveness of new teleoperation algorithms. Broader Impacts: Intuitive and natural human-in-the-loop control interfaces will improve human health and well being, through applications in surgery and rehabilitation. The results of this study will be disseminated publicly on the investigator's laboratory website, a conference workshop, and a new medical robotics seminar to be held jointly between UT Dallas and UT Southwestern Medical Center. Outreach activities, lab tours, and mentoring of underrepresented students at all levels, will broaden participation in STEM. Additionally, the proximity of the investigator?s hospital-based lab to medical professionals will engage non-engineers in design and innovation
Off
University of Texas at Dallas
-
National Science Foundation
Ann Majewicz Submitted by Ann Majewicz on December 22nd, 2015
It is now recognized that cloud data centers are a significant consumer of energy resources and a substantial source of greenhouse gas emission. On the other hand, the intermittency and uncertainty of renewable energy present a daunting operating challenge for the electricity grid. The key idea behind this CRII: Cyber-Physical Systems project is that these two challenges are in fact symbiotic: data centers can be virtual batteries for the electricity grid. Specifically, data centers are large loads, but are also flexible. If the electricity grid can call on the flexibilities of data centers via appropriate demand response programs, this will be a crucial tool for easing the incorporation of renewable energy into the electricity grid. Unfortunately, despite the great potential, the current reality is that data centers perform little demand response. This project aims at the interdisciplinary challenges of enabling demand response from cloud data centers to realize the societal benefits. The overarching goal of this project is to develop an intellectual framework to understand and guide the realization of demand response from cloud data centers, to address engineering and economic challenges in order to manage the daunting risk. This project will first quantify the potential economic and environmental benefits of demand response from cloud data centers. The quantification includes the societal cost savings and emission reductions from networked data centers through geographical load balancing, and the impacts of demand response taxonomy. Built upon the first thrust, this project will continue to tackle the interdisciplinary challenges of both local control algorithm design and global market design for data center demand response in order to facilitate their participation in various demand response programs. The researchers will study prediction-based pricing design and analysis, demand response program design based on optimization decomposition, and distributed online algorithm design for risk management and distributed control. The results of this project will, at the societal level, help utility companies and load serving entities realize the great potential that lies in the Cloud, and, furthermore, design demand response programs that provide right incentives for data center operators to participate. At a local level, this project will help guide the management of geographically distributed data centers in participating in the right demand response programs. The control algorithms and demand response programs, as well as the methodology, can be applied beyond data centers. This research will create new knowledge in distributed online algorithm design and optimization-based market design. Additionally, this project will help design an interdisciplinary course Sustainable IT and IT for Sustainability. Personnel involved in this project, graduates and undergraduates, will receive innovation experiences through the algorithm design, analysis, implementation, and testing.
Off
SUNY at Stony Brook
-
National Science Foundation
Submitted by Zhenhua Liu on December 22nd, 2015
This proposal will establish a framework for developing distributed Cyber-Physical Systems operating in a Networked Control Systems (NCS) environment. Specific attention is focused on an application where the computational, and communication challenges are unique due to the sheer size of the physical system, and communications between system elements include potential for significant losses and delays. An example of this is the power grid which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources. Although, much has been done to model and analyze the impact of data dropouts and delay in NCS at a theoretical level, their impact on the behavior of cyber physical systems has received little attention. As a result much of the past research done on the `smart grid' has oversimplified the `physical' portion of the model, thereby overlooking key computational challenges lying at the heart of the dimensionality of the model and the heterogeneity in the dynamics of the grid. A clear gap has remained in understanding the implications of uncertainties in NCS (e.g. bandwidth limitations, packet dropout, packet disorientation, latency, signal loss, etc.) cross-coupled with the uncertainties in a large power grid with wind farms (e.g. variability in wind power, fault and nonlinearity, change in topology etc.) on the reliable operation of the grid. To address these challenges, this project will, for the first time, develop a modeling framework for discovering hitherto unknown interactions through co-simulation of NCS, distributed computing, and a large power grid included distributed wind generation resources. Most importantly, it addresses challenges in distributed computation through frequency domain abstractions and proposes two novel techniques in grid stabilization during packet dropout. The broader impact lies in providing deeper understanding of the impact of delays and dropouts in the Smart Grid. This will enable a better utilization of energy transmission assets and improve integration of renewable energy sources. The project will facilitate participation of women in STEM disciplines, and will include outreach with local Native American tribal community colleges This project will develop fundamental understanding of impact of network delays and drops using an approach that is applicable to a variety of CPS. It will enable transformative Wide-Areas Measurement Systems research for the smart grid through modeling adequacy studies of a representative sub-transient model of the grid along with the representation of packet drop in the communication network by a Gilbert model. Most importantly, fundamental concepts of frequency domain abstraction including balanced truncation and optimal Hankel-norm approximation are proposed to significantly reduce the burden of distributed computing. Finally, a novel `reduced copy' approach and a `modified Kalman filtering' approach are proposed to address the problem of grid stabilization using wind farm controls when packet drop is encountered.
Off
North Dakota State University Fargo
-
National Science Foundation
Nilanjan Ray Chaudhuri Submitted by Nilanjan Ray Chaudhuri on December 22nd, 2015
This cross-disciplinary research proposes a patient-specific cost-saving approach to the design and optimization of healthcare cyber-physical systems (HCPS). The HCPS computes the patient's physiological state based on sensors, communicates this information via a network from home to hospital for quantifying risk indices, signals the need for critical medical intervention in real time, and controls vital health signals (e.g., cardiac rhythm, blood glucose). The research proposed under the HCPS paradigm will treat the human body as a complex system. It will entail the development of mathematical models that capture the time-dependence and fractal behavior of physiological processes and the design of quality-of-life (QoL) control strategies for medical devices. The research will advance the understanding of the correlations between physiological processes, drug treatment, stress level and lifestyle. To date, the complex interdependence, variability and individual characteristics of physiological processes have not been taken into account in the design of medical devices and artificial organs. The existing mathematical approaches rely on reductionist and Markovian assumptions. This research project will rethink the theoretical foundations for the design of healthcare cyber-physical systems by capturing the interdependencies and fractal characteristics of physiological processes within a highly dynamic network. To establish the theoretical foundations of HCPS, a three-step approach will be followed: (i) construct a multi-scale non-equilibrium statistical physics inspired framework for patient modeling that captures the time dependence, non-Gaussian behavior, interdependencies and multi-fractal behavior of physiological processes; (ii) develop adaptive patient-specific and physiology-aware (multi-fractal) close-loop control algorithms for dynamic complex networks; (iii) design algorithms and methodologies for the HCPS networked components that account for biological and technological constraints. This research will significantly contribute to early chronic disease detection and treatment. Models and implementable algorithms, which can both predict physiological dynamics and assess the risk of acute and chronic diseases, will be valuable instruments for patient-centered healthcare. This in-depth mathematical analysis of physiological complexity facilitates a transformative multimodal and multi-scale approach to CPS design with healthcare applications. The project not only addresses the current scientific and technological gap in CPS, but can also foster new research directions in related fields such as the study of interdependent networks with implications for understanding homeostasis and diseases and the study and control of complex systems. The cyber-physical systems designed under this newly proposed paradigm will have vital social and economic implications, including the improvement of QoL and the reduction of lost productivity rates due to chronic diseases. The project will offer interdisciplinary training for graduate, undergraduate and K-12 students. The PI will integrate the research results within his courses at University of Southern California and make them widely available through the project website. Moreover, the PI will enhance civic engagement by involving college and K-12 students in community outreach activities that will raise awareness of the important role of health monitoring.
Off
University of Southern California
-
National Science Foundation
Paul Bogdan Submitted by Paul Bogdan on December 22nd, 2015
Airborne networking, unlike the networking of fixed sensors, mobile devices, and slowly-moving vehicles, is very challenging because of the high mobility, stringent safety requirements, and uncertain airspace environment. Airborne networking is important because of the growing complexity of the National Airspace System with the integration of unmanned aerial vehicles (UAVs). This project develops an innovative new theoretical framework for cyber-physical systems (CPS) to enable airborne networking, which utilizes direct flight-to-to-flight communication for flexible information sharing, safe maneuvering, and coordination of time-critical missions. This project uses an innovative co-design approach that exploits the mutual benefits of networking and decentralized mobility control in an uncertain heterogeneous environment. The approach departs from the usual perspective that views physical mobility as communication constraints, communication as constraints for decentralized mobility control, and uncertain environment as constraints for both. Instead, approach taken here proactively exploits the constraints, uncertainty, and new structures with information to enable high-performance designs. The features of the co-design such as scalability, fast response, trackability, and robustness to uncertainty advance the core CPS science on decision-making for large-scale networks under uncertainty. The technological advances developed in this research will contribute to multiple fields, including mobile networking, decentralized control, experiment design, and general real-time decision making under uncertainty for CPS. Technology transfer will be pursued through close collaboration with industries and national laboratories. This novel research direction will also serve as a unique backdrop to inspire the CPS workforce. New teaching materials will benefit the future CPS workforce by equipping them with a knowledge base in networking and control. Broad outreach and dissemination activities that involve undergraduate student societies, K-12 school teaching, and public events, all stemming from the PI's current efforts, will be enhanced.
Off
University of North Texas
-
National Science Foundation
Yan Wan Submitted by Yan Wan on December 22nd, 2015
This project advances the scientific knowledge on design methods for improving the resilience of civil infrastructures to disruptions. To improve resilience, critical services in civil infrastructure sectors must utilize new diagnostic tools and control algorithms that ensure survivability in the presence of both security attacks and random faults, and also include the models of incentives of human decision makers in the design process. This project will develop a practical design toolkit and platform to enable the integration of resiliency-improving control tools and incentive schemes for Cyber-Physical Systems (CPS) deployed in civil infrastructures. Theory and algorithms will be applied to assess resiliency levels, select strategies to improve performance, and provide reliability and security guarantees for sector-specific CPS functionalities in water, electricity distribution and transportation infrastructures. The main focus is on resilient design of network control functionalities to address problems of incident response, demand management, and supply uncertainties. More broadly, the knowledge and tools from this project will influence CPS designs in water, transport, and energy sectors, and also be applicable to other systems such as supply-chains for food, oil and gas. The proposed platform will be used to develop case studies, test implementations, and design projects for supporting education and outreach activities. Current CPS deployments lack integrated components designed to survive in uncertain environments subject to random events and the actions of strategic entities. The toolkit (i) models the propagation of disruptions due to failure of cyber-physical components, (ii) detects and responds to both local and network-level failures, and (iii) designs incentive schemes that improve aggregate levels of public good (e.g., decongestion, security), while accounting for network interdependencies and private information among strategic entities. The validation approach uses real-world data collected from public sources, test cases developed by domain experts, and simulation software. These tools are integrated to provide a multi-layer design platform, which explores the design space to synthesize solutions that meet resiliency specifications. The platform ensures that synthesized implementations meet functionality requirements, and also estimates the performance guarantees necessary for CPS resilience. This modeling, validation, exploration, and synthesis approach provides a scientific basis for resilience engineering. It supports CPS education by providing a platform and structured workflow for future engineers to approach and appreciate implementation realities and socio-technical constraints.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Saurabh Amin Submitted by Saurabh Amin on December 22nd, 2015
Every year around 30,000 fatalities and 2.2 million injuries happen on US roads. The problem is compounded with huge economic losses due to traffic congestions. Advances in Cooperative Vehicle Efficiency and Safety (CVES) systems promise to significantly reduce the human and economic cost of transportation. However, large scale deployment of such systems is impeded by significant technical and scientific gaps, especially when it comes to achieving real-time and high accuracy situational awareness for cooperating vehicles. This CAREER project aims at closing these gaps through developing fundamental information networking methodologies for coordinated control of automated systems. These methodologies will be based on the innovative concept of modeled knowledge propagation. In addition, the educational component of this project integrates interdisciplinary Cyber-Physical Systems (CPS) subjects on the design of automated networked systems into graduate and undergraduate training modules. For robust operation, CVES systems require each vehicle to have reliable real-time awareness of the state of other coordinated vehicles. This project addresses the critical need for robust control-oriented situational awareness by developing a multi-resolution information networking methodology that is model- and context-aware. The approach is to develop the novel concepts of model communication and its derived multi-resolution networking. Context-aware model-communication relies on transmission and synchronization of models (e.g., stochastic hybrid system structures and parameters) instead of raw measurements. This allows for high fidelity synchronization of dynamical models of CVES over networks. Multi-resolution networking concept is enabled through scalable representations of models. Multi resolution models allow in-network adaptation of model fidelity to available network resources. The result is robustness of CVES to network service variability. The successful deployment of CVES, even partially, will provide significant societal benefits through reduced traffic accidents and improved efficiency. This project will enable large scale CVES deployment by addressing its scalability challenge. In addition, methodologies developed in this project will be crucial to emerging autonomous vehicles, which are also expected to coordinate their actions over communication networks. The fundamental research outcomes on knowledge propagation through network synchronization of dynamical models will be broadly applicable in other CPS domains such as smart grid. The educational component of this project will target training of CPS researchers and engineers on subjects in intelligent transportation and energy systems.
Off
West Virginia University Research Corporation
-
National Science Foundation
Submitted by Yaser Fallah on December 22nd, 2015
Brain-computer interfaces (BCIs) are cyber-physical systems (CPSs) that record human brain waves and translate them into the control commands for external devices such as computers and robots. They may allow individuals with spinal cord injury (SCI) to assume direct brain control of a lower extremity prosthesis to regain the ability to walk. Since the lower extremity paralysis due to SCI leads to as much as $50 billion of health care cost each year in the US alone, the use of a BCI-controlled lower extremity prosthesis to restore walking can have a significant public health impact. Recent results have demonstrated that a person with paraplegia due to SCI can use a non-invasive BCI to regain basic walking. While encouraging, this BCI is unlikely to become a widely adopted solution since the poor signal quality of non-invasively recorded brain waves may lead to unreliable BCI operation. Moreover, lengthy and tedious mounting procedures of the non-invasive BCI systems are impractical. A permanently implantable BCI CPS can address these issues, but critical challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for brain signal processing. The goal of this study is to develop a benchtop version of a fully implantable BCI CPS, capable of acquiring electrocorticogram signals, recorded directly from the surface of the brain, and analyzing them internally to enable direct brain control of a robotic gait exoskeleton (RGE) for walking. The BCI CPS will be designed as a low-power system with revolutionary adaptive power management in order to meet stringent heat and power consumption constraints for future human implantation. Comprehensive measurements and benchtop tests will ensure proper function of BCI CPS. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a small group of human subjects. The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat production while enabling complex operations to be performed. The study will also help deepen the understanding of how the human brain controls walking, which has long been a mystery to neuroscientists. Finally, this study?s broader impact is to promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to (under-)graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations. Recent results have demonstrated that a person with paraplegia due to SCI can use an electroencephalogram (EEG)-based BCI to regain basic walking. While encouraging, this EEG-based BCI is unlikely to become a widely adopted solution due to EEG?s inherent noise and susceptibility to artifacts, which may lead to unreliable operation. Also, lengthy and tedious EEG (un-)mounting procedures are impractical. A permanently implantable BCI CPS can address these issues, but critical CPS challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for neural signal processing. The goal of this study is to implement a benchtop analogue of a fully implantable BCI CPS, capable of acquiring high-density (HD) electrocorticogram (ECoG) signals, and analyzing them internally to facilitate direct brain control of a robotic gait exoskeleton (RGE) for walking. The BCI CPS will be designed as a low-power modular system with revolutionary adaptive power management in order to meet stringent heat dissipation and power consumption constraints for future human implantation. The first module will be used for acquisition of HD-ECoG signals. The second module will internally execute optimized BCI algorithms and wirelessly transmit commands to an RGE for walking. System and circuit-level characterizations will be conducted through comprehensive measurements. Benchtop tests will ensure the proper system function and conformity to biomedical constraints. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a group of human subjects.The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat dissipation while enabling complex algorithms to be executed in real time. The study will also help deepen the physiological understanding of how the human brain controls walking. This study will promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to under-graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations.
Off
University of California at Irvine
-
National Science Foundation
Payam Heydari Submitted by Payam Heydari on December 22nd, 2015
Subscribe to Control