Software & systems engineering and their applications.
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
Submitted by Vijay Gupta on December 18th, 2015
This project explores balancing performance considerations and power consumption in cyber-physical systems, through algorithms that switch among different modes of operation (e.g., low-power/high-power, on/off, or mobile/static) in response to environmental conditions. The main theoretical contribution is a computational, hybrid optimal control framework that is connected to a number of relevant target applications where physical modeling, control design, and software architectures all constitute important components. The fundamental research in this program advances state-of-the-art along four different dimensions, namely (1) real-time, hybrid optimal control algorithms for power management, (2) power-management in mobile sensor networks, (3) distributed power-aware architectures for infrastructure management, and (4) power-management in embedded multi-core processors. The expected outcome, which is to enable low-power devices to be deployed in a more effective manner, has implications on a number of application domains, including distributed sensor and communication networks, and intelligent and efficient buildings. The team represents both a research university (Georgia Institute of Technology) and an undergraduate teaching university (York College of Pennsylvania) in order to ensure that the educational components are far-reaching and cut across traditional educational boundaries. The project involves novel, inductive-based learning modules, where graduate students team with undergraduate researchers.
Off
York College of Pennsylvania
-
National Science Foundation
Patrick Martin Submitted by Patrick Martin on December 18th, 2015
This research aims at hybrid (discrete-continuous) computation for cyber-physical systems. The research augments the today-ubiquitous discrete (digital) model of computation with continuous (analog) computing, which is well-suited to the continuous natural variables involved in cyber-physical systems, and to the error-tolerant nature of computation in such systems. The result is a computing platform on a single silicon chip, with higher energy efficiency, higher speed, and better numerical convergence than is possible with purely discrete computation. The research has several thrusts: (1) Hardware: modern silicon chip technology is used to merge analog computing hardware on the same chip with digital hardware, the latter used for control and co-computation, (2) Architecture: methods are devised for making hybrid computing functionality accessible to the software, (3) Microarchitecture: Choices are made on the granularity, type and organization of analog and hybrid analog-digital functional units, and (4) Concrete application to a realistic cyber-physical system consisting of a team of robots. The research extends modern computer architecture techniques, and advances in mixed analog/digital chip technology mainly developed in the context of communications, to hybrid computing for cyber-physical systems. It brings higher levels of energy efficiency to error-tolerant workloads that future computers will have to handle. The techniques developed can be extended to other systems in which efficient computation is a must, such as weather forecasting and high-energy physics. The work integrates research with education and includes plans for broad dissemination of the results obtained.
Off
University of Texas at Austin
-
National Science Foundation
Submitted by Michael Bryant on December 18th, 2015
This research aims at hybrid (discrete-continuous) computation for cyber-physical systems. The research augments the today-ubiquitous discrete (digital) model of computation with continuous (analog) computing, which is well-suited to the continuous natural variables involved in cyber-physical systems, and to the error-tolerant nature of computation in such systems. The result is a computing platform on a single silicon chip, with higher energy efficiency, higher speed, and better numerical convergence than is possible with purely discrete computation. The research has several thrusts: (1) Hardware: modern silicon chip technology is used to merge analog computing hardware on the same chip with digital hardware, the latter used for control and co-computation, (2) Architecture: methods are devised for making hybrid computing functionality accessible to the software, (3) Microarchitecture: Choices are made on the granularity, type and organization of analog and hybrid analog-digital functional units, and (4) Concrete application to a realistic cyber-physical system consisting of a team of robots. The research extends modern computer architecture techniques, and advances in mixed analog/digital chip technology mainly developed in the context of communications, to hybrid computing for cyber-physical systems. It brings higher levels of energy efficiency to error-tolerant workloads that future computers will have to handle. The techniques developed can be extended to other systems in which efficient computation is a must, such as weather forecasting and high-energy physics. The work integrates research with education and includes plans for broad dissemination of the results obtained.
Off
Columbia University
-
National Science Foundation
Submitted by Yannis Tsividis on December 18th, 2015
The objective of this research is to establish a foundational framework for smart grids that enables significant penetration of renewable DERs and facilitates flexible deployments of plug-and-play applications, similar to the way users connect to the Internet. The approach is to view the overall grid management as an adaptive optimizer to iteratively solve a system-wide optimization problem, where networked sensing, control and verification carry out distributed computation tasks to achieve reliability at all levels, particularly component-level, system-level, and application level. Intellectual merit. Under the common theme of reliability guarantees, distributed monitoring and inference algorithms will be developed to perform fault diagnosis and operate resiliently against all hazards. To attain high reliability, a trustworthy middleware will be used to shield the grid system design from the complexities of the underlying software world while providing services to grid applications through message passing and transactions. Further, selective load/generation control using Automatic Generation Control, based on multi-scale state estimation for energy supply and demand, will be carried out to guarantee that the load and generation in the system remain balanced. Broader impact. The envisioned architecture of the smart grid is an outstanding example of the CPS technology. Built on this critical application study, this collaborative effort will pursue a CPS architecture that enables embedding intelligent computation, communication and control mechanisms into physical systems with active and reconfigurable components. Close collaborations between this team and major EMS and SCADA vendors will pave the path for technology transfer via proof-of-concept demonstrations.
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Panganamala Kumar Submitted by Panganamala Kumar on December 18th, 2015
CALL FOR PAPERS 9th International Workshop on Computing with Terms and Graphs  (TERMGRAPH  2016) a Satellite Event of ETAPS 2016 Background
Submitted by Anonymous on December 17th, 2015
Event
ReS4AnT
First Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (ReS4AnT) http://www.date-conference.com/conference/workshop-w08  |  http://res4ant.deib.polimi.it Co-located with the Design, Automation & Test in Europe Conference & Exhibition (DATE) March 18, 2016, Dresden, Germany
Submitted by Anonymous on December 17th, 2015
Event
RTAS 2016
22nd IEEE Rea​l-Time and Embedded Technology and Applications Symposium (RTAS 2016) will be held in Vienna, Austria, as part of the Cyber-Physical Systems Week (CPSWeek) in April 2016. The conference includes a Work in Progress (WiP) and Demo session intended for presentation of recent and on-going work, as well as for demonstrations of tools and technology that have the potential to be used in the design and development of real-time systems. In keeping with the spirit of the main symposium, we invite submissions of WiP papers and demos with an emphasis on system and application aspects.
Submitted by Anonymous on December 8th, 2015
13th IEEE International Conference on Ubiquitous Intelligence and Computing (IEEE UIC 2016) Ubiquitous sensors, devices, networks and information are paving the way towards a smart world in which computational intelligence is distributed throughout the physical environment to provide reliable and relevant services to people.
Submitted by Anonymous on December 8th, 2015
Event
CPSSC 2016
1st International Workshop on Cyber-Physical Systems in the Context of Smart Cities 23 February 2016 | Vienna, Austria | @SE2016
Katie Dey Submitted by Katie Dey on December 2nd, 2015
Subscribe to Architectures