Theoretical aspects of cyber-physical systems.
The objective of this research is to develop energy-efficient integrity establishment techniques for dynamic networks of cyber physical devices. In such dynamic networks, devices connect opportunistically and perform general-purpose computations on behalf of other devices. However, some devices may be malicious in intent and affect the integrity of computation. The approach is to develop new trust establishment mechanisms for dynamic networks. Existing trusted computing mechanisms are not directly applicable to cyber physical devices because they are resource-intensive and require devices to have special-purpose hardware. This project is addressing these problems along three research prongs. The first is a comprehensive study of the resource bottlenecks in current trust establishment protocols. Second, the insights from this study are being used to develop resource-aware attestation protocols for cyber physical devices that are equipped with trusted hardware. Third, the project is developing new trust establishment protocols for cyber physical devices that may lack trusted hardware. A key outcome of the project is an improved understanding of the tradeoffs needed to balance the concerns of security and resource-awareness in dynamic networks. Dynamic networks allow cyber physical devices to form a highly-distributed, cloud-like infrastructure for computations involving the physical world. The trust-establishment mechanisms developed in this project encourage devices to participate in dynamic networks, thereby unleashing the full potential of dynamic networks. This project includes development of dynamic networking applications, such as distributed gaming and social networking, in undergraduate curricula and course projects, thereby fostering the participation of this key demographic.
Off
Rutgers University New Brunswick
-
National Science Foundation
Ulrich Kremer
Ganapathy, Vinod
Submitted by Vinod Ganapathy on April 7th, 2011
The objective of this research is to address fundamental challenges in the verification and analysis of reconfigurable distributed hybrid control systems. These occur frequently whenever control decisions for a continuous plant depend on the actions and state of other participants. They are not supported by verification technology today. The approach advocated here is to develop strictly compositional proof-based verification techniques to close this analytic gap in cyber-physical system design and to overcome scalability issues. This project develops techniques using symbolic invariants for differential equations to address the analytic gap between nonlinear applications and present verification techniques for linear dynamics. This project aims at transformative research changing the scope of systems that can be analyzed. The proposed research develops a compositional proof-based approach to hybrid systems verification in contrast to the dominant automata-based verification approaches. It represents a major improvement addressing the challenges of composition, reconfiguration, and nonlinearity in system models The proposed research has significant applications in the verification of safety-critical properties in next generation cyber-physical systems. This includes distributed car control, robotic swarms, and unmanned aerial vehicle cooperation schemes to full collision avoidance protocols for multiple aircraft. Analysis tools for distributed hybrid systems have a broad range of applications of varying degrees of safety-criticality, validation cost, and operative risk. Analytic techniques that find bugs or ensure correct functioning can save lives and money, and therefore are likely to have substantial economic and societal impact.
Off
Carnegie-Mellon University
-
National Science Foundation
Platzer, Andre
Andre Platzer Submitted by Andre Platzer on April 7th, 2011
The objective of this research is to investigate the foundations, methodologies, algorithms and implementations of cyberphysical networks in the context of medical applications. The approach is to design, implement and study Carenet, a medical care network, by investigating three critical issues in the design and construction of cyberphysical networks: (1) rare event detection and multidimensional analysis in cyberphysical data streams, (2) reliable and trusted data analysis with cyberphysical networks, including veracity analysis for object consolidation and redundancy elimination, entity resolution and information integration, and feedback interaction between cyber- and physical- networks, and (3) spatiotemporal data analysis including spatiotemporal cluster analysis, sequential pattern mining, and evolution of cyberphysical networks. Intellectual merit: This project focuses on several most pressing issues in large-scale cyberphysical networks, and develops foundations, principles, methods, and technologies of cyberphysical networks. It will deepen our understanding of the foundations, develop effective and scalable methods for mining such networks, enrich our understanding of cyberphysical systems, and benefit many mission-critical applications. The study will enrich the principles and technologies of both cyberphysical systems and information network mining. Broader impacts: The project will integrate multiple disciplines, including networked cyberphysical systems, data mining, and information network technology, and advance these frontiers. It will turn raw data into useful knowledge and facilitate strategically important applications, including the analysis of patient networks, combat networks, and traffic networks. Moreover, the project systematically generates new knowledge and contains a comprehensive education and training plan to promote diversity, publicity, and outreach.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Han, Jiawei
Jiawei Han Submitted by Jiawei Han on April 7th, 2011
The objective of this research is to investigate the foundations, methodologies, algorithms and implementations of cyberphysical networks in the context of medical applications. The approach is to design, implement and study Carenet, a medical care network, by investigating three critical issues in the design and construction of cyberphysical networks: (1) rare event detection and multidimensional analysis in cyberphysical data streams, (2) reliable and trusted data analysis with cyberphysical networks, including veracity analysis for object consolidation and redundancy elimination, entity resolution and information integration, and feedback interaction between cyber- and physical- networks, and (3) spatiotemporal data analysis including spatiotemporal cluster analysis, sequential pattern mining, and evolution of cyberphysical networks. Intellectual merit: This project focuses on several most pressing issues in large-scale cyberphysical networks, and develops foundations, principles, methods, and technologies of cyberphysical networks. It will deepen our understanding of the foundations, develop effective and scalable methods for mining such networks, enrich our understanding of cyberphysical systems, and benefit many mission-critical applications. The study will enrich the principles and technologies of both cyberphysical systems and information network mining. Broader impacts: The project will integrate multiple disciplines, including networked cyberphysical systems, data mining, and information network technology, and advance these frontiers. It will turn raw data into useful knowledge and facilitate strategically important applications, including the analysis of patient networks, combat networks, and traffic networks. Moreover, the project systematically generates new knowledge and contains a comprehensive education and training plan to promote diversity, publicity, and outreach.
Off
University of Virginia Main Campus
-
National Science Foundation
Stankovic, John
John Stankovic Submitted by John Stankovic on April 7th, 2011
The objectives of this research are to design a heterogeneous network of embedded systems so that faults can be quickly detected and isolated and to develop on-line and off-line fault diagnosis and prognosis methods. Our approach is to develop functional dependency models between the failure modes and the concomitant monitoring mechanisms, which form the basis for failure modes, effects and criticality analysis, design for testability, diagnostic inference, and the remaining useful life estimation of (hardware) components. Over the last few years, the electronic explosion in automotive vehicles and other application domains has significantly increased the complexity, heterogeneity, and interconnectedness of embedded systems. To address the cross-subsystem malfunction phenomena in such networked systems, it is essential to develop a common methodology that: (i) identifies the potential failure modes associated with software, hardware, and hardware-software interfaces; (ii) generates functional dependencies between the failure modes and tests; (iii) provides an on-line/off-line diagnosis system; (iv) computes the remaining useful life estimates of components based on the diagnosis; and (iv) validates the diagnostic and prognostic inference methods via fault injection prior to deployment in the field. The development of functional dependency models and diagnostic inference from these models to aid in online and remote diagnosis and prognosis of embedded systems is a potentially novel aspect of this effort. This project seeks to improve the competitiveness of the U.S. automotive industry by enhancing vehicle reliability, performance and safety, and by improving customer satisfaction. Other representative applications include aerospace systems, electrification of transportation, medical equipment, and communication and power networks, to name a few.
Off
University of Connecticut
-
National Science Foundation
Swapna Gokhale
Mark Howell
Yilu Zhang
Pattipati, Krishna
Krishna Pattipati Submitted by Krishna Pattipati on April 7th, 2011
The objective of this research is to develop energy-efficient integrity establishment techniques for dynamic networks of cyber physical devices. In such dynamic networks, devices connect opportunistically and perform general-purpose computations on behalf of other devices. However, some devices may be malicious in intent and affect the integrity of computation. The approach is to develop new trust establishment mechanisms for dynamic networks. Existing trusted computing mechanisms are not directly applicable to cyber physical devices because they are resource-intensive and require devices to have special-purpose hardware. This project is addressing these problems along three research prongs. The first is a comprehensive study of the resource bottlenecks in current trust establishment protocols. Second, the insights from this study are being used to develop resource-aware attestation protocols for cyber physical devices that are equipped with trusted hardware. Third, the project is developing new trust establishment protocols for cyber physical devices that may lack trusted hardware. A key outcome of the project is an improved understanding of the tradeoffs needed to balance the concerns of security and resource-awareness in dynamic networks. Dynamic networks allow cyber physical devices to form a highly-distributed, cloud-like infrastructure for computations involving the physical world. The trust-establishment mechanisms developed in this project encourage devices to participate in dynamic networks, thereby unleashing the full potential of dynamic networks. This project includes development of dynamic networking applications, such as distributed gaming and social networking, in undergraduate curricula and course projects, thereby fostering the participation of this key demographic.
Off
Pennsylvania State Univ University Park
-
National Science Foundation
Jaeger, Trent
Trent Jaeger Submitted by Trent Jaeger on April 7th, 2011
The objective of this research is to discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile micro-robots that self-organize into cooperative configurations. The approach is intrinsically interdisciplinary and organized along four main thrusts: (1) Algorithms for distributed coordination and control under severe power, communication, and mobility constraints. (2) Electronics for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits. (3) Locomotion devices and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions. (4) Integration of the algorithms, electronics, and actuators into a fleet of ant-size micro-robots. No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications. The PIs will adopt a co-design philosophy that promotes cross-disciplinary research and tight collaboration. Networks of ant-sized robots are expected to be useful in disaster relief, manufacturing, warehouse management, and ecological monitoring, as well as in new unforeseen applications. In addition, the new methods and principles proposed here can be transitioned to other highly-distributed and resource-constrained engineering problems, such as air-traffic control systems. This research program will train Ph.D. students with unique skills in the design of hybrid distributed networks and it will involve undergraduate students, particularly underrepresented minorities and women.
Off
University of Maryland College Park
-
National Science Foundation
Elisabeth Smela
Pamela Abshire
Martins, Nuno Miguel
Nuno Martins Submitted by Nuno Martins on April 7th, 2011
The objective of this research is to create interfaces that enable people with impaired sensory-motor function to control interactive cyber-physical systems such as artificial limbs, wheelchairs, automobiles, and aircraft. The approach is based on the premise that performance can be significantly enhanced merely by warping the perceptual feedback provided to the human user. A systematic way to design this feedback will be developed by addressing a number of underlying mathematical and computational challenges. The intellectual merit lies in the way that perceptual feedback is constructed. Local performance criteria like stability and collision avoidance are encoded by potential functions, and gradients of these functions are used to warp the display. Global performance criteria like optimal navigation are encoded by conditional probabilities on a language of motion primitives, and metric embeddings of these probabilities are used to warp the display. Together, these two types of feedback facilitate improved safety and performance while still allowing the user to retain full control over the system. If successful, this research could improve the lives of people suffering from debilitating physical conditions such as amputation or stroke and also could protect people like drivers or pilots that are impaired by transient conditions such as fatigue, boredom, or substance abuse. Undergraduate and graduate engineering students will benefit through involvement in research projects, and K-12 students and teachers will benefit through participation in exhibits presented at the Engineering Open House, an event hosted annually by the College of Engineering at the University of Illinois.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Seth Hutchinson
Bretl, Timothy
Timothy Bretl Submitted by Timothy Bretl on April 7th, 2011
The objective of this research is to develop new principles for creating and comparing models of skilled human activities, and to apply those models to systems for teaching, training and assistance of humans performing these activities. The models investigated will include both hybrid systems and language-based models. The research will focus on modeling surgical manipulations during robotic minimally invasive surgery. Models for expert performance of surgical tasks will be derived from recorded motion and video data. Student data will be compared with these expert models, and both physical guidance and information display methods will be developed to provide feedback to the student based on the expert model. The intellectual merit of this work lies in the development of a new set of mathematical tools for modeling human skilled activity. These tools will provide new insights into the relationship between skill, style, and content in human motion. Additional intellectual merit lies in the connection of hybrid systems modeling to language models, the creation of techniques for automated training, and in the assessment of new training methods. The broader impact of this research will be the creation of automated methods for modeling and teaching skilled human motion. These methods will have enormous implications for the training and re-training of the US workforce. This project will also impact many diversity and outreach activities, including REU programs and summer camps for K-12 outreach. The senior personnel of this project also participate in the Robotic Systems Challenge and the Women in Science and Engineering program.
Off
Johns Hopkins University
-
National Science Foundation
Hager, Gregory
Gregory Hager Submitted by Gregory Hager on April 7th, 2011
The objective of this research is to develop principles and tools for the design of control systems using highly distributed, but slow, computational elements. The approach of this research is to build an architecture that uses highly parallelized, simple computational elements incorporating nonlinearities, time delay and asynchronous computation as integral design elements. Tools for the design of non-deterministic protocols will be developed and demonstrated using an existing multi-vehicle testbed at Caltech. The motivation for using "slow computing" is to develop new feedback control architectures for applications where computational power is extremely limited. Examples of such systems are those where the energy usage of the system must remain small, either due to the source of power available (e.g. batteries or solar cells) or the physical size of the device (e.g. microscale and nanoscale robots). A longer term application area is in the design of control systems using novel computing substrates, such as biological circuits. A critical element in both cases is the tight coupling between the dynamics of the underlying process and the temporal properties of the algorithm that is controlling it. The implementation plan for this project involves students from multiple disciplines (including bioengineering, computer science, electrical engineering and mechanical engineering) as well as at multiple experience levels (sophomores through PhD students) working together on a set of interlinked research problems. The project is centered in the Control and Dynamical Systems department at Caltech, which has a strong record of recruiting women and underrepresented minority students into its programs.
Off
California Institute of Technology
-
National Science Foundation
Murray, Richard
Richard Murray Submitted by Richard Murray on April 7th, 2011
Subscribe to Foundations