Applications of CPS technologies dealing with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition.
In many important situations, analytically predicting the behavior of physical systems is not possible. For example, the three dimensional nature of physical systems makes it provably impossible to express closed-form analytical solutions for even the simplest systems. This has made experimentation the primary modality for designing new cyber-physical systems (CPS). Since physical prototyping and experiments are typically costly and hard to conduct, "virtual experiments" in the form of modeling and simulation can dramatically accelerate innovation in CPS. Unfortunately, major technical challenges often impede the effectiveness of modeling and simulation. This project develops foundations and tools for overcoming these challenges. The project focuses on robotics as an important, archetypical class of CPS, and consists of four key tasks: 1) Compiling and analyzing a benchmark suite for modeling and simulating robots, 2) Developing a meta-theory for relating cyber-physical models, as well as tools and a test bed for robot modeling and simulation, 3) Validating the research results of the project using two state-of-the-art robot platforms that incorporate novel control technologies and will require novel programming techniques to fully realize their potential 4) Developing course materials incorporating the project's research results and test bed. With the aim of accelerating innovation in a wide range of domains including stroke rehabilitation and prosthetic limbs, the project is developing new control concepts and modeling and simulation technologies for robotics. In addition to new mathematical foundations, models, and validation methods, the project will also develop software tools and systematic methods for using them. The project trains four doctoral students; develops a new course on modeling and simulation for cyber-physical systems that balances both control and programming concepts; and includes an outreach component to the public and to minority-serving K-12 programs.
Off
William Marsh Rice University
-
National Science Foundation
Robert Cartwright
Marcia O'Malley
Taha, Walid
Walid Taha Submitted by Walid Taha on December 6th, 2011
The computing landscape is a richly-heterogeneous space including both fixed and mobile nodes with a large variety of sensing, actuation and computational capabilities (including mobile devices, home electronics, taxis, robotic drones, etc.). Cyber-physical applications built on these devices have the potential to gather data on, analyze, and adapt to or control a range of environments. The challenge, however, is that Cyber-Physical Systems (CPSs) are difficult to program, and even more difficult to incorporate from one deployment to another, or to dynamically manage as nodes availability changes. Thus, CPS applications are too often programmed in a brittle fashion that impedes their ability to efficiently use available compute/sense/actuate resources beyond a one-shot deployment. In response, this project is improving CPS design and control in four primary thrusts. First, the project is developing CPSISA, an abstraction layer or intermediate representation to facilitate CPS applications expressing their compute/sense/actuate requirements to lower-level mapping and management layers. Second, the project is exploring methods of providing a Device Attribute Catalog (DAC) that summarizes a region?s available CPS nodes and their capabilities. Third, this research is improving and exploiting the ability to model, predict, and control the mobility of CPS nodes. When some CPS nodes are mobile, the accuracy and performance of a CPS application fundamentally is a function of where nodes will be positioned at any moment in time. This work exploits both static statistical coverage analysis and dynamic prediction and interpolation. Fourth, using CPSISA, DAC, and other resources as input, the team is developing tools to statically or dynamically optimize mappings of CPS applications onto available resources. To test ideas in a detailed and concrete manner, two applications are being studied and deployed. First, the FireGuide application for emergency response assistance uses groups of mobile/robotic nodes for guiding first responders in building fires. Second, a Regional Traffic Management (RTM) application demonstrates ideas at the regional level and will explore CPS scenarios for automobile traffic sensing and dynamic toll pricing. The proposed research program has the potential for broad societal impact. Studies that improve how building emergencies are handled will improve emergency response safety both for occupants and for first responders around the country. Likewise, the deployment plans regarding regional traffic management will improve traffic patterns, fuel efficiency and quality-of-life for commuters across the United States. The research team is distributing the CPSISA, CPSMap, and CPSDyn software frameworks to allow other researchers and developers to make use of them. Extensive industry collaborations foster effective technology transfer. Finally, the project continues and broadens the PIs? prior track records for undergraduate research advising and for mentoring women students and members of under-represented minority groups.
Off
Carnegie Mellon University
-
National Science Foundation
Zhang, Pei
Pei Zhang Submitted by Pei Zhang on December 6th, 2011

In many important situations, analytically predicting the behavior of physical systems is not possible. For example, the three dimensional nature of physical systems makes it provably impossible to express closed-form analytical solutions for even the simplest systems. This has made experimentation the primary modality for designing new cyber-ph0.00000..0000... 0ysical systems (CPS). Since physical prototyping and experiments are typically costly and hard to conduct, "virtual experiments" in the form of modeling and simulation can dramatically accelerate innovation in CPS. Unfortunately, major technical challenges often impede the effectiveness of modeling and simulation. This project develops foundations and tools for overcoming these challenges. The project focuses on robotics as an important, archetypical class of CPS, and consists of four key tasks: 1) Compiling and analyzing a benchmark suite for modeling and simulating robots, 2) Developing a meta-theory for relating cyber-physical models, as well as tools and a test bed for robot modeling and simulation, 3) Validating the research results of the project using two state-of-the-art robot platforms that incorporate novel control technologies and will require novel programming techniques to fully realize their potential 4) Developing course materials incorporating the project's research results and test bed. With the aim of accelerating innovation in a wide range of domains including stroke rehabilitation and prosthetic limbs, the project is developing new control concepts and modeling and simulation technologies for robotics. In addition to new mathematical foundations, models, and validation methods, the project will also develop software tools and systematic methods for using them. The project trains four doctoral students; develops a new course on modeling and simulation for cyber-physical systems that balances both control and programming concepts; and includes an outreach component to the public and to minority-serving K-12 programs.

Off
Texas Engineering Experiment Station
-
National Science Foundation
Aaron Ames Submitted by Aaron Ames on December 6th, 2011
The objective of this research is to develop a trustworthy and high-performance neural-machine interface (NMI) that accurately determines a user?s locomotion mode in real-time for neural-controlled artificial legs. The proposed approach is to design the NMI by integrating a new pattern recognition strategy with a high-performance computing embedded system. This project tackles the challenges of accurate interpretation of information from the neuromuscular system, a physical system, using appropriate computation in a cyber system to process the information in real-time. The neural-machine interface consists of multiple sensors that reliably monitor the neural and mechanical information and a set of new algorithms that can fuse and coordinate the highly dynamic information for accurate identification of user intent. The algorithm is to be implemented on a high-performance graphic processing unit (GPU) to meet real-time requirements. This project has the potential to enable the design of neural-controlled artificial legs and may initiate a new direction for research in and the design of prosthetic leg systems. Innovations in this domain have the potential to improve the quality of life of leg amputees, including soldiers with limb amputations. The proposed approaches seek to permit cyber systems to cope with physical uncertainty and dynamics, a common challenge in cyber-physical systems, and to pave a way for applying high-performance computing in biomedical engineering. Besides providing comprehensive training to undergraduate and graduate students, the investigators plan to introduce community college students to cyber-physical systems concepts in an interactive and engaging manner.
Off
Washington University
-
National Science Foundation
Qing Yang
Yan Sun
Huang, He (Helen)
He (Helen) Huang Submitted by He (Helen) Huang on November 4th, 2011
The objective of this research is to develop new models of computation for multi-robot systems. Algorithm execution proceeds in a cycle of communication, computation, and motion. Computation is inextricably linked to the physical configuration of the system. Current models cannot describe multi-robot systems at a level of abstraction that is both manageable and accurate. This project will combine ideas from distributed algorithms, computational geometry, and control theory to design new models for multi-robot systems that incorporate physical properties of the systems. The approach is to focus on the high-level problem of exploring an unknown environment while performing designated tasks, and the sub-problem of maintaining network connectivity. Key issues to be studied will include algorithmic techniques for handling ongoing discrete failures, and ways of understanding system capabilities as related to failure rates, geometric assumptions and physical parameters such as robot mobility and communication bandwidth. New metrics will be developed for error rates and robot mobility. Intellectual merit arises from the combination of techniques from distributed algorithms, computational geometry, and control theory to develop and analyze algorithms for multi-robot systems. The project will develop a new class of algorithms and techniques for their rigorous analysis, not only under ideal conditions, but under a variety of error assumptions. The project will test theoretical ideas empirically, on three different multi-robot systems. Broader impacts will include new algorithms for robot coordination, and rigorous understanding of the capabilities of different hardware platforms. Robots are an excellent outreach tool, and provide concrete examples of theory in action.
Off
William Marsh Rice University
-
National Science Foundation
McLurkin, James
James McLurkin Submitted by James McLurkin on November 3rd, 2011
The objective of this research is to develop new models of computation for multi-robot systems. Algorithm execution proceeds in a cycle of communication, computation, and motion. Computation is inextricably linked to the physical configuration of the system. Current models cannot describe multi-robot systems at a level of abstraction that is both manageable and accurate. This project will combine ideas from distributed algorithms, computational geometry, and control theory to design new models for multi-robot systems that incorporate physical properties of the systems. The approach is to focus on the high-level problem of exploring an unknown environment while performing designated tasks, and the sub-problem of maintaining network connectivity. Key issues to be studied will include algorithmic techniques for handling ongoing discrete failures, and ways of understanding system capabilities as related to failure rates, geometric assumptions and physical parameters such as robot mobility and communication bandwidth. New metrics will be developed for error rates and robot mobility. Intellectual merit arises from the combination of techniques from distributed algorithms, computational geometry, and control theory to develop and analyze algorithms for multi-robot systems. The project will develop a new class of algorithms and techniques for their rigorous analysis, not only under ideal conditions, but under a variety of error assumptions. The project will test theoretical ideas empirically, on three different multi-robot systems. Broader impacts will include new algorithms for robot coordination, and rigorous understanding of the capabilities of different hardware platforms. Robots are an excellent outreach tool, and provide concrete examples of theory in action.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Lynch, Nancy
Nancy Lynch Submitted by Nancy Lynch on November 3rd, 2011
The objective of this research is to develop truly intelligent, automated driving through a new paradigm that tightly integrates probabilistic perception and deterministic planning in a formal, verifiable framework. The interdisciplinary approach utilizes three interlinked tasks. Representations develops new techniques for constructing and maintaining representations of a dynamic environment to facilitate higher-level planning. Anticipation and Motion Planning develops methods to anticipate changes in the environment and use them as part of the planning process. Verifiable Task Planning develops theory and techniques for providing probabilistic guarantees for high-level behaviors. Ingrained in the approach is the synergy between theory and experiment using an in house, fully equipped vehicle. The recent Urban Challenge showed the current brittleness of autonomous driving, where small perception mistakes would propagate into planners, causing near misses and small accidents; Fundamentally, there is a mismatch between probabilistic perception and deterministic planning, leading to "reactive" rather than "intelligent" behaviors. The proposed research directly addresses this by developing a single, unified theory of perception and planning for intelligent cyber-physical systems. Near term, this research could be used to develop advanced safety systems in cars. The elderly and physically impaired would benefit from inexpensive, advanced automation in cars. Far term, the advanced intelligence could lead to automated vehicles for applications such as cooperative search and rescue. The research program will educate students through interdisciplinary courses in computer science and mechanical engineering, and experiential learning projects. Results will be disseminated to the community including under-represented colleges and universities.
Off
Cornell University
-
National Science Foundation
Daniel Huttenlocher
Noah Snavely
Campbell, Mark
Mark Campbell Submitted by Mark Campbell on October 31st, 2011
The objective of this research is to investigate how to replace human decision-making with computational intelligence at a scale not possible before and in applications such as manufacturing, transportation, power-systems and bio-sensors. The approach is to build upon recent contributions in algorithmic motion planning, sensor networks and other fields so as to identify general solutions for planning and coordination in networks of cyber-physical systems. The intellectual merit of the project lies in defining a planning framework, which integrates simulation to utilize its predictive capabilities, and focuses on safety issues in real-time planning problems. The framework is extended to asynchronous coordination by utilizing distributed constraint optimization protocols and dealing with inconsistent state estimates among networked agents. Thus, the project addresses the frequent lack of well-behaved mathematical models for complex systems, the challenges of dynamic and partially-observable environments, and the difficulties in synchronizing and maintaining a unified, global world state estimate for multiple devices over a large-scale network. The broader impact involves the development and dissemination of new algorithms and open-source software. Research outcomes will be integrated to teaching efforts and undergraduate students will be involved in research. Underrepresented groups will be encouraged to participate, along with students from the Davidson Academy of Nevada, a free public high school for gifted students. At a societal level, this project will contribute towards achieving flexible manufacturing floors, automating the transportation infrastructure, autonomously delivering drugs to patients and mitigating cascading failures of the power network. Collaboration with domain experts will assist in realizing this impact.
Off
University of Nevada
-
National Science Foundation
Bekris, Kostas
Kostas Bekris Submitted by Kostas Bekris on October 31st, 2011
The objective of this project is to investigate fundamental issues in network control and distributed coordination of wireless sensor and robotic networks. The study of these cyber-physical systems is important as they find wide applicability in several applications areas including environmental monitoring, search and rescue, and health care. The approach is to exploit intrinsic properties of such systems to ensure stability, high performance, scalability and modularity despite the deleterious network effects. With respect to intellectual merit, the proposed effort has the potential to lead to a transformational change in the understanding of the mechanisms for delay instability and spatio-temporal synchronization in cyber-physical systems. It is expected that this understanding will help in solving the delay-instability, synchronization, and coordination problems in wireless sensor and robotic networks without sacrificing the performance, scalability, or modularity of the system. Specific expected outcomes include a framework for designing control algorithms for robotic systems with input/output communication delays, a communication management module for addressing medium access delays and data losses, synchronization algorithms for real-time coordination between robotic systems, and a scheme for ensuring clock synchronization. With respect to broader impacts, the project has the potential to impact the broad area of wireless sensor and actuator networks that are important in several domains. One graduate student and an undergraduate student directly benefit from the research and it is expected that several undergraduate and graduate students will benefit from the enriched curricula at University of Maryland. High school students from underrepresented groups are included in the research effort through the University of Maryland's ESTEEM program.
Off
University of Maryland College Park
-
National Science Foundation
Chopra, Nikhil
Nikhil Chopra Submitted by Nikhil Chopra on October 31st, 2011
Office of Naval Research
Janos Sztipanovits Submitted by Janos Sztipanovits on August 3rd, 2011
Subscribe to Robotics