The terms denote engineering domains that have high CPS content.
Processors in cyber-physical systems are increasingly being used in applications where they must operate in harsh ambient conditions and a computational workload which can lead to high chip temperatures. Examples include cars, robots, aircraft and spacecraft. High operating temperatures accelerate the aging of the chips, thus increasing transient and permanent failure rates. Current ways to deal with this mostly turn off the processor core or drastically slow it down when some part of it is seen to exceed a given temperature threshold. However, this pass/fail approach ignores the fact that (a) processors experience accelerated aging due to high temperatures, even if these are below the threshold, and (b) while deadlines are a constraint for real-time tasks to keep the controlled plant in the allowed state space, the actual controller response times that will increase if the voltage or frequency is lowered (to cool down the chip) are what determine the controlled plant performance. Existing approaches also fail to exploit the tradeoff between controller reliability (affected by its temperature history) and the performance of the plant. This project addresses these issues. Load-shaping algorithms are being devised to manage thermal stresses while ensuring appropriate levels of control quality. Such actions include task migration, changing execution speed, selecting an alternative algorithm or software implementation of control functions, and terminating prematurely optional portions of iterative tasks. Validation platforms for this project include automobiles and unmanned aerial vehicles. These platforms have been chosen based on both their importance to society and the significant technical challenges they pose. With CPS becoming ever more important in our lives and businesses, this project which will make CPS controllers more reliable and/or economical has broad potential social and economic impacts. Collaboration with General Motors promotes transition of the new technology to industry. The project includes activities to introduce students to thermal control in computing, in courses spanning high-school, undergraduate and graduate curricula.
Off
University of Massachusetts Amherst
-
National Science Foundation
C.Mani  Krishna Submitted by C.Mani Krishna on December 21st, 2015
The problem of controlling biomechatronic systems, such as multiarticulating prosthetic hands, involves unique challenges in the science and engineering of Cyber Physical Systems (CPS), requiring integration between computational systems for recognizing human functional activity and intent and controlling prosthetic devices to interact with the physical world. Research on this problem has been limited by the difficulties in noninvasively acquiring robust biosignals that allow intuitive and reliable control of multiple degrees of freedom (DoF). The objective of this research is to investigate a new sensing paradigm based on ultrasonic imaging of dynamic muscle activity. The synergistic research plan will integrate novel imaging technologies, new computational methods for activity recognition and learning, and high-performance embedded computing to enable robust and intuitive control of dexterous prosthetic hands with multiple DoF. The interdisciplinary research team involves collaboration between biomedical engineers, electrical engineers and computer scientists. The specific aims are to: (1) research and develop spatio-temporal image analysis and pattern recognition algorithms to learn and predict different dexterous tasks based on sonographic patterns of muscle activity (2) develop a wearable image-based biosignal sensing system by integrating multiple ultrasound imaging sensors with a low-power heterogeneous multicore embedded processor and (3) perform experiments to evaluate the real-time control of a prosthetic hand. The proposed research methods are broadly applicable to assistive technologies where physical systems, computational frameworks and low-power embedded computing serve to augment human activities or to replace lost functionality. The research will advance CPS science and engineering through integration of portable sensors for image-based sensing of complex adaptive physical phenomena such as dynamic neuromuscular activity, and real-time sophisticated image understanding algorithms to interpret such phenomena running on low-power high performance embedded systems. The technological advances would enable practical wearable image-based biosensing, with applications in healthcare, and the computational methods would be broadly applicable to problems involving activity recognition from spatiotemporal image data, such as surveillance. This research will have societal impacts as well as train students in interdisciplinary methods relevant to CPS. About 1.6 million Americans live with amputations that significantly affect activities of daily living. The proposed project has the long-term potential to significantly improve functionality of upper extremity prostheses, improve quality of life of amputees, and increase the acceptance of prosthetic limbs. This research could also facilitate intelligent assistive devices for more targeted neurorehabilitation of stroke victims. This project will provide immersive interdisciplinary CPS-relevant training for graduate and undergraduate students to integrate computational methods with imaging, processor architectures, human functional activity and artificial devices for solving challenging public health problems. A strong emphasis will be placed on involving undergraduate students in research as part of structured programs at our institution. The research team will involve students with disabilities in research activities by leveraging an ongoing NSF-funded project. Bioengineering training activities will be part of a newly developed undergraduate curriculum and a graduate curriculum under development. The synergistic research plan has been designed to advance CPS science and engineering through the development of new computational methods for dynamic activity recognition and learning from image sequences, development of novel wearable imaging technologies including high-performance embedded computing, and real-time control of a physical system. The specific aims are to: (1) Research and develop spatio-temporal image analysis and pattern recognition algorithms to learn and predict different dexterous tasks based on sonographic patterns of muscle activity. The first aim has three subtasks designed to collect, analyze and understand image sequences associated with functional tasks. (2) Develop a wearable image-based biosignal sensing system by integrating multiple ultrasound imaging sensors with a low-power heterogeneous multicore embedded processor. The second aim has two subtasks designed to integrate wearable imaging sensors with a real-time computational platform. (3) Perform experiments to evaluate the real-time control of a prosthetic hand. The third aim will integrate the wearable image acquisition system developed in Aim 2, and the image understanding algorithms developed in Aim 1, for real-time evaluation of the control of a prosthetic hand interacting with a virtual reality environment. Successful completion of these aims will result in a real-time system that acquires image data from complex neuromuscular activity, decodes activity intent from spatiotemporal image data using computational algorithms, and controls a prosthetic limb in a virtual reality environment in real time. Once developed and validated, this system can be the starting point for developing a new class of sophisticated control algorithms for intuitive control of advanced prosthetic limbs, new assistive technologies for neurorehabilitation, and wearable real-time imaging systems for smart health applications.
Off
George Mason University
-
National Science Foundation
Siddhartha Sikdar Submitted by Siddhartha Sikdar on December 21st, 2015
This project focuses on the problem of information acquisition, state estimation and control in the context of cyber physical systems. In our underlying model, a (set of) decision maker(s), by controlling a sequence of actions with uncertain outcomes, dynamically refines the belief about stochastically time-varying parameters of interest. These parameters are then used to control the physical system efficiently and robustly. Here the cyber system collects, processes, and acquires information about the underlying physical system of interest, which is used for its control. The proposed work will develop a new theoretical framework for stochastic learning, decision-making, and control in stochastically-varying cyber physical systems. In order to obtain analytical insights into the structure of efficient design, we first consider the case where the actions of the cyber system only affect the estimate of the underlying physical system. This class of problems arises in the context of (distributed) sensing/tracking of a physical system in isolation from cyber system control of the physical system's state. Joint state estimation and control for cyber-physical systems will then be considered. Here the most natural first step is to obtain sufficient conditions and/or special classes of systems where a separated approach to the information acquisition and efficient control is (near) optimal. To demonstrate its utility in practice, our theoretical framework will be applied in the specific context of energy efficient control of data centers and robust control of the smart grid under limited sensing. The intellectual merit of this work will be to develop a theoretical framework for the design of cyber-physical systems including information acquisition, state estimation, and control. In addition, separation theorems for the optimality of separate state estimation and control will be explored. In terms of broader impacts, significant performance improvement of control systems closed over communication networks will impact a wide range of applications for societal benefit, including smart buildings, intelligent transportation systems, energy-efficient data centers, and the future smart-grid. The PIs plan to disseminate the research results widely through conferences and journals, as well as by organizing specialized workshops and conference sessions related to cyber physical systems. The proposed project will train Ph.D. students as well as enrich the curriculum taught by the PIs in communications, stochastic control, and networks. The PIs have a strong track record in diversity and outreach activities, which for this project will include exposure and involvement of high school and undergraduate students, including under-represented minorities and women.
Off
University of California at San Diego
-
National Science Foundation
Submitted by Tara Javidi on December 21st, 2015
This project develops algorithms for revising a given model for a cyber-physical system while ensuring that the revised model is correct-by-construction and is realizable in the constraints imposed by the cyber-physical system. It specializes these algorithms in the context of fault-tolerance (with the theory of separation of concerns) and in the context of timed models (with the role of fairness). The project identifies constraints imposed by the inability to revise some or all physical components and ensure that they are satisfied during revision. It specializes model revision algorithms in two contexts: fault-tolerance and role of fairness during revision. Regarding fault-tolerance, it develops the theory of separation of concerns for cyber-physical systems. This work bridges the gap between fault-tolerance components, control theory and model revision. Regarding fairness, it develops efficient algorithms for revision by using abstraction to model continuous behaviors with discrete behaviors that utilize fairness. One broad impact of this project is to advance the fundamental science and technology of cyber-physical systems by developing systematic methods that ensure system correctness during maintenance where the system is revised due to changing requirements and/or environment. The algorithms from this project will provide techniques for providing assurance in automotive and aeronautical systems. In the context where fault-tolerance properties are added, the proposed activities also have the potential to identify missing specifications early and thereby reduce the cost of designing corresponding systems. The proposed activities facilitate in educating graduate students about different tasks involved in providing assurance via component based models and via model revision.
Off
Michigan State University
-
National Science Foundation
Submitted by Sandeep Kulkarni on December 21st, 2015
Reliable operation of cyber-physical systems (CPS) of societal importance such as Smart Electric Grids is critical for the seamless functioning of a vibrant economy. Sustained power outages can lead to major disruptions over large areas costing millions of dollars. Efficient computational techniques and tools that curtail such systematic failures by performing fault diagnosis and prognostics are therefore necessary. The Smart Electric Grid is a CPS: it consists of networks of physical components (including generation, transmission, and distribution facilities) interfaced with cyber components (such as intelligent sensors, communication networks, and control software). This grant provides funding to develop new methods to build models for the smart grid representing the failure dependencies in the physical and cyber components. The models will be used to build an integrated system-wide solution for diagnosing faults and predicting future failure propagations that can account for existing protection mechanisms. The original contribution of this work will be in the integrated modeling of failures on multiple levels in a large distributed cyber-physical system and the development of novel, hierarchical, robust, online algorithms for diagnostics and prognostics. If successful, the model-based fault diagnostics and prognostics techniques will improve the effectiveness of isolating failures in large systems by identifying impending failure propagations and determining the time to critical failures that will increase system reliability and reduce the losses accrued due to failures. This work will bridge the gap between fault management approaches used in computer science and power engineering that are needed as the grid becomes smarter, more complex, and more data intensive. Outcomes of this project will include modeling and run-time software prototypes, research publications, and experimental results in collaborations with industry partners that will be made available to the scientific community.
Off
Vanderbilt University
-
National Science Foundation
Gabor Karsai Submitted by Gabor Karsai on December 21st, 2015
Reliable operation of cyber-physical systems (CPS) of societal importance such as Smart Electric Grids is critical for the seamless functioning of a vibrant economy. Sustained power outages can lead to major disruptions over large areas costing millions of dollars. Efficient computational techniques and tools that curtail such systematic failures by performing fault diagnosis and prognostics are therefore necessary. The Smart Electric Grid is a CPS: it consists of networks of physical components (including generation, transmission, and distribution facilities) interfaced with cyber components (such as intelligent sensors, communication networks, and control software). This grant provides funding to develop new methods to build models for the smart grid representing the failure dependencies in the physical and cyber components. The models will be used to build an integrated system-wide solution for diagnosing faults and predicting future failure propagations that can account for existing protection mechanisms. The original contribution of this work will be in the integrated modeling of failures on multiple levels in a large distributed cyber-physical system and the development of novel, hierarchical, robust, online algorithms for diagnostics and prognostics. If successful, the model-based fault diagnostics and prognostics techniques will improve the effectiveness of isolating failures in large systems by identifying impending failure propagations and determining the time to critical failures that will increase system reliability and reduce the losses accrued due to failures. This work will bridge the gap between fault management approaches used in computer science and power engineering that are needed as the grid becomes smarter, more complex, and more data intensive. Outcomes of this project will include modeling and run-time software prototypes, research publications, and experimental results in collaborations with industry partners that will be made available to the scientific community.
Off
North Carolina State University
-
National Science Foundation
Submitted by Anonymous on December 21st, 2015
The objective of this proposal is to develop a distributed algorithmic framework, supported by a highly fault-tolerant software system, for executing critical transmission-level operations of the North American power grid using gigantic volumes of Synchrophasor data. As the number of Phasor Measurement Units (PMU) increases to more than thousands in the next 4-5 years, it is rather intuitive that the current state-of-the-art centralized communication and information processing architecture of Wide-Area Measurement System (WAMS) will no longer be sustainable under such data-explosion, and a completely distributed cyber-physical architecture will need to be developed. The North American Synchrophasor Initiative (NASPI) is currently addressing this architectural aspect by developing new communication and computing protocols through NASPI-net and Phasor Gateway. However, very little attention has been paid so far to perhaps the most critical consequence of this envisioned distributed architecture "namely", distributed algorithms, and their relevant middleware. Our primary task, therefore, will be to develop parallel computational methods for solving real-time wide-area monitoring and control problems with analytical investigation of their stability, convergence and robustness properties, followed by their implementation and testing against extraneous malicious attacks using our WAMS-RTDS testbed at NC State. In particular, we will address three critical research problems "namely" distributed wide-area oscillation monitoring, transient stability assessment, and voltage stability monitoring. The intellectual merit of this research will be in establishing an extremely timely application area of the PMU technology through its integration with distributed computing and optimal control. It will illustrate how ideas from advanced ideas from numerical methods and distributed optimization can be combined into power system monitoring and control applications, and how they can be implemented via fault-tolerant computing to maintain grid stability in face of catastrophic cyber and physical disturbances. The broader impact of this project will be in providing a much-needed application of CPS engineering to advance emerging research on PMU-integrated next-generation smart grids. Research results will be broadcast through journal publications, jointly organized graduate courses between NC State and University of Illinois Urbana Champagne, conference tutorials and workshops. Undergraduate research for minority engineering students will be promoted via the FREEDM Systems Center, summer internships via Information Trust Institute (UIUC) and RENCI, and middle/high-school student mentoring through the NCSU Science House program.
Off
North Carolina State University
-
National Science Foundation
Aranya Chakrabortty Submitted by Aranya Chakrabortty on December 21st, 2015
Cyber-Physical Systems (CPS) encompass a large variety of systems including for example future energy systems (e.g. smart grid), homeland security and emergency response, smart medical technologies, smart cars and air transportation. One of the most important challenges in the design and deployment of Cyber-Physical Systems is how to formally guarantee that they are amenable to effective human control. This is a challenging problem not only because of the operational changes and increasing complexity of future CPS but also because of the nonlinear nature of the human-CPS system under realistic assumptions. Current state of the art has in general produced simplified models and has not fully considered realistic assumptions about system and environmental constraints or human cognitive abilities and limitations. To overcome current state of the art limitations, our overall research goal is to develop a theoretical framework for complex human-CPS that enables formal analysis and verification to ensure stability of the overall system operation as well as avoidance of unsafe operating states. To analyze a human-CPS involving a human operator(s) with bounded rationality three key questions are identified: (a) Are the inputs available to the operator sufficient to generate desirable behaviors for the CPS? (b) If so, how easy is it for the operator with her cognitive limitations to drive the system towards a desired behavior? (c) How can areas of poor system performance and determine appropriate mitigations be formally identified? The overall technical approach will be to (a) develop and appropriately leverage general cognitive models that incorporate human limitations and capabilities, (b) develop methods to abstract cognitive models to yield tractable analytical human models (c) develop innovative techniques to design the abstract interface between the human and underlying system to reflect mutual constraints, and (d) extend current state-of-the-art reachability and verification algorithms for analysis of abstract interfaces, iin which one of the systems in the feedback loop (i.e., the user) is mostly unknown, uncertain, highly variable or poorly modeled. The research will provide contributions with broad significance in the following areas: (1) fundamental principles and algorithms that would serve as a foundation for provably safe robust hybrid control systems for mixed human-CPS (2) methods for the development of analytical human models that incorporate cognitive abilities and limitations and their consequences in human control of CPS, (3) validated techniques for interface design that enables effective human situation awareness through an interface that ensures minimum information necessary for the human to safely control the CPS, (4) new reachability analysis techniques that are scalable and allow rapid determination of different levels of system safety. The research will help to identify problems (such as automation surprises, inadequate or excessive information contained in the user interface) in safety critical, high-risk, or expensive CPS before they are built, tested and deployed. The research will provide the formal foundations for understanding and developing human-CPS and will have a broad range of applications in the domains of healthcare, energy, air traffic control, transportation systems, homeland security and large-scale emergency response. The research will contribute to the advancement of under-represented students in STEM fields through educational innovation and outreach. The code, benchmarks and data will be released via the project website. Formal descriptions of models of human cognition are in general incompatible with formal models of the Cyber Physical System (CPS) the human operator(s) control. Therefore, it is difficult to determine in a rigorous way whether a CPS controlled by a human operator will be safe or stable and under which circumstances. The objective of this research is to develop an analytic framework of human-CPS systems that encompasses engineering compatible formal models of the human operator that preserve the basic architectural features of human cognition. In this project the team will develop methodologies for building such models as well as techniques for formal verification of the human-CPS system so that performance guarantees can be provided. They will validate models in a variety of domains ranging from air traffic control to large scale emergency response to the administration of anesthesia.
Off
University of Pittsburgh
-
National Science Foundation
Michael Lewis Submitted by Michael Lewis on December 21st, 2015
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile. The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation. The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California at Los Angeles
-
National Science Foundation
Submitted by Mani Srivastava on December 21st, 2015
In telerobotic applications, human operators interact with robots through a computer network. This project is developing tools to prevent security threats in telerobotics, by monitoring and detecting malicious activities and correcting for them. To develop tools to prevent and mitigate security threats against telerobotic systems, this project adapts cybersecurity methods and extends them to cyber-physical systems. Knowledge about physical constraints and interactions between the cyber and physical components of the system are leveraged for security. A monitoring system is developed which collects operator commands and robot feedback information to perform real-time verification of the operator. Timely and reliable detection of any discrepancy between real and spoofed operator movements enables quick detection of adversarial activities. The results are evaluated on the UW-developed RAVEN surgical robot. This project brings together research in robotics, computer and network security, control theory and machine learning, in order to gain better understanding of complex teleoperated robotic systems and to engineer telerobotic systems that provide strict safety, security and privacy guarantees. The results are relevant and applicable to a wide range of applications, including telerobotic surgery, search and rescue missions, military operations, underwater infrastructure and repair, cleanup and repair in hazardous environments, mining, as well as manipulation/inspections of objects in low earth orbit. The project algorithms, software and hardware are being made available to the non-profit cyber-physical research community. Graduate and undergraduate students are being trained in cyber-physical systems security topics, and K-12, community college students and under-represented minority students are being engaged.
Off
University of Washington
-
National Science Foundation
Howard Chizeck Submitted by Howard Chizeck on December 21st, 2015
Subscribe to CPS Domains