The terms denote technology areas that are part of the CPS technology suite or that are impacted by CPS requirements.
The objective of this research is the creation of a coastal observing system that enables dense, in situ, 4D sensing through networked, sensor-equipped underwater drifters. The approach is to develop the technologies required to deploy a swarm of autonomous buoyancy controlled drifters, which are vehicles that can control their depth, but are otherwise carried entirely by the ocean currents. Such Lagrangian sampling promises to deliver a wealth of new data, ranging from applications in physical oceanography (mapping 3D currents), biology (observing the dispersion of larvae and nutrients), environmental science (tracking coastal pollutants and effluents from storm drains), and security (monitoring harbors and ports). This observing system fundamentally requires accurate positions of the drifters (to interpret the spatial correlations of data samples), swarm control algorithms (to achieve desired sampling topologies), and wireless communication (to coordinate between the individual drifters). This research will create distributed techniques to self-localize the drifter swarm, novel swarm control algorithms that enable topology manipulation while purely leveraging the stratified flow environment, and efficient wireless underwater communication for information sharing. This project has significant societal impact and educational elements. Underwater drifter swarms will enable novel insights into a wide array of scientific questions, including understanding plankton transport, accumulation and dispersion as well as monitoring harmful algal blooms. Undergraduates will play an active role in many aspects of this project, thereby offering them a uniquely interdisciplinary experience. Finally, outreach to high school students will occur through the UCSD COSMOS summer program.
Off
University of California-San Diego Scripps Institute of Oceanography
-
National Science Foundation
Jaffe, Jules
Jules Jaffe Submitted by Jules Jaffe on April 7th, 2011
The objective of the research is to develop tools for comprehensive design and optimization of air traffic flow management capabilities at multiple spatial and temporal resolutions: a national airspace-wide scale and one-day time horizon (strategic time-frame); and at a regional scale (of one or a few Centers) and a two-hour time horizon (tactical time-frame). The approach is to develop a suite of tools for designing complex multi-scale dynamical networks, and in turn to use these tools to comprehensively address the strategic-to-tactical traffic flow management problem. The two directions in tool development include 1) the meshed modeling/design of flow- and queueing-networks under network topology variation for cyber- and physical- resource allocation, and 2) large-scale network simulation and numerical analysis. This research will yield aggregate modeling, management design, and validation tools for multi-scale dynamical infrastructure networks, and comprehensive solutions for national-wide strategic-to-tactical traffic flow management using these tools. The broader impact of the research lies in the significant improvement in cost and equity that may be achieved by the National Airspace System customers, and in the introduction of systematic tools for infrastructure-network design that will have impact not only in transportation but in fields such as electric power network control and health-infrastructure design. The development of an Infrastructure Network Ideas Cluster will enhance inter-disciplinary collaboration on the project topics and discussion of their potential societal impact. Activities of the cluster include cross-university undergraduate research training, seminars on technological and societal-impact aspects of the project, and new course development.
Off
University of North Texas
-
National Science Foundation
Wan, Yan
Yan Wan Submitted by Yan Wan on April 7th, 2011
The objective of the research is to develop tools for comprehensive design and optimization of air traffic flow management capabilities at multiple spatial and temporal resolutions: a national airspace-wide scale and one-day time horizon (strategic time-frame); and at a regional scale (of one or a few Centers) and a two-hour time horizon (tactical time-frame). The approach is to develop a suite of tools for designing complex multi-scale dynamical networks, and in turn to use these tools to comprehensively address the strategic-to-tactical traffic flow management problem. The two directions in tool development include 1) the meshed modeling/design of flow- and queueing-networks under network topology variation for cyber- and physical- resource allocation, and 2) large-scale network simulation and numerical analysis. This research will yield aggregate modeling, management design, and validation tools for multi-scale dynamical infrastructure networks, and comprehensive solutions for national-wide strategic-to-tactical traffic flow management using these tools. The broader impact of the research lies in the significant improvement in cost and equity that may be achieved by the National Airspace System customers, and in the introduction of systematic tools for infrastructure-network design that will have impact not only in transportation but in fields such as electric power network control and health-infrastructure design. The development of an Infrastructure Network Ideas Cluster will enhance inter-disciplinary collaboration on the project topics and discussion of their potential societal impact. Activities of the cluster include cross-university undergraduate research training, seminars on technological and societal-impact aspects of the project, and new course development.
Off
Washington State University
-
National Science Foundation
Roy, Sandip
Sandip Roy Submitted by Sandip Roy on April 7th, 2011
Using the newly introduced idea of a sensor lattice, this project conducts a systematic study of the "granularity'' at which the world can be sensed and how that affects the ability to accomplish common tasks with cyber-physical systems (CPSs). A sensor is viewed as a device that partitions the physical world states into measurement-invariant equivalence classes, and the sensor lattice indicates how all sensors are related. Several distinctive characteristics of the pursued approach are: 1) Virtual sensor models are developed, which correspond to minimal information requirements of common tasks and are independent of particular physical sensor implementations. 2) Uncertainty is decoupled into disturbances and pre-images, the latter of which yields the measurement-invariant equivalence classes and sensor lattice. 3) The development of particular spatial and temporal filters that are based on minimal information requirements of a task. 4) Formally establishing the conditions that enable sensors in a CPS to be interchanged, and then determining the relative complexity tradeoffs. The intellectual merit is to understand how mappings from the physical world to sensor outputs affect the solvability and complexity of commonly occurring tasks. This is a critical step in the development of mathematical and computational CPS foundations. Broader impact is expected by improving design methodologies for CPS solutions to societal problems such as assisted living, environmental monitoring, and automated agriculture. The sensor lattice approach is transformative because it represents a new paradigm with which to address basic sensor-based inference issues, which extend well beyond the traditional academic boundaries.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Lavalle, Steven
Steven Lavalle Submitted by Steven Lavalle on April 7th, 2011
The objective of this research is to establish a foundational framework for smart grids that enables significant penetration of renewable DERs and facilitates flexible deployments of plug-and-play applications, similar to the way users connect to the Internet. The approach is to view the overall grid management as an adaptive optimizer to iteratively solve a system-wide optimization problem, where networked sensing, control and verification carry out distributed computation tasks to achieve reliability at all levels, particularly component-level, system-level, and application level. Intellectual merit. Under the common theme of reliability guarantees, distributed monitoring and inference algorithms will be developed to perform fault diagnosis and operate resiliently against all hazards. To attain high reliability, a trustworthy middleware will be used to shield the grid system design from the complexities of the underlying software world while providing services to grid applications through message passing and transactions. Further, selective load/generation control using Automatic Generation Control, based on multi-scale state estimation for energy supply and demand, will be carried out to guarantee that the load and generation in the system remain balanced. Broader impact. The envisioned architecture of the smart grid is an outstanding example of the CPS technology. Built on this critical application study, this collaborative effort will pursue a CPS architecture that enables embedding intelligent computation, communication and control mechanisms into physical systems with active and reconfigurable components. Close collaborations between this team and major EMS and SCADA vendors will pave the path for technology transfer via proof-of-concept demonstrations.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Kumar, Panganamala
Panganamala Kumar Submitted by Panganamala Kumar on April 7th, 2011
Body Area Sensor Networks: A Holistic Approach from Silicon to Users The objective of this research is to develop new principles and techniques for adaptive operation in highly dynamic physical environments, using miniaturized, energy-constrained devices. The approach is to use holistic cross-layer solutions that simultaneously address all aspects of the system, from low-level hardware design to higher-level communication and data fusion algorithms to top-level applications. In particular, this work focuses on body area sensor networks as emerging cyber-physical systems. The intellectual merit includes producing new principles regarding how cyber systems must be designed in order to continually adapt and respond to rapidly changing physical environments, sensed data, and application contexts in an energy-efficient manner. New cross-layer technologies will be created that use a holistic bottom-up and top-down design -- from silicon to user and back again. A novel system-on-a-chip hardware platform will be designed and fabricated using three cutting-edge technologies to reduce the cost of communication and computation by several orders of magnitude. The broad impact of this project will enable the wide range of applications and societal benefits promised by body area networks, including improving the quality and reducing the costs of healthcare. The technology will have broad implications for any cyber physical system that uses energy constrained wireless devices. A new seminar series will bring together experts from many fields (including domain experts, such as physicians and healthcare professionals). The key aspects of this work that deal with healthcare have the potential to attract women and minorities to the computer field.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Wentzloff, David
David Wentzloff Submitted by David Wentzloff on April 7th, 2011
The objective of this research is to improve the ability to track the orbits of space debris and thereby reduce the frequency of collisions. The approach is based on two scientific advances: 1) optimizing the scheduling of data transmission from a future constellation of orbiting Cubesats to ground stations located worldwide, and 2) using satellite data to improve models of the ionosphere and thermosphere, which in turn are used to improve estimates of atmospheric density. Intellectual Merit Robust capacity-constrained scheduling depends on fundamental research on optimization algorithms for nonlinear problems involving both discrete and continuous variables. This objective depends on advances in optimization theory and computational techniques. Model refinement depends on adaptive control algorithms, and can lead to fundamental advances for automatic control systems. These contributions provide new ideas and techniques that are broadly applicable to diverse areas of science and engineering. Broader Impacts Improving the ability to predict the trajectories of space debris can render the space environment safer in both the near term---by enhancing astronaut safety and satellite reliability---and the long term---by suppressing cascading collisions that could have a devastating impact on the usage of space. This project will impact real-world practice by developing techniques that are applicable to large-scale modeling and data collection, from weather prediction to Homeland Security. The research results will impact education through graduate and undergraduate research as well as through interdisciplinary modules developed for courses in space science, satellite engineering, optimization, and data-based modeling taught across multiple disciplines.
Off
University Corporation For Atmospheric Research
-
National Science Foundation
Anderson, Jeffrey
Jeffrey Anderson Submitted by Jeffrey Anderson on April 7th, 2011
The objective of this research is to improve the ability to track the orbits of space debris and thereby reduce the frequency of collisions. The approach is based on two scientific advances: 1) optimizing the scheduling of data transmission from a future constellation of orbiting Cubesats to ground stations located worldwide, and 2) using satellite data to improve models of the ionosphere and thermosphere, which in turn are used to improve estimates of atmospheric density. Intellectual Merit Robust capacity-constrained scheduling depends on fundamental research on optimization algorithms for nonlinear problems involving both discrete and continuous variables. This objective depends on advances in optimization theory and computational techniques. Model refinement depends on adaptive control algorithms, and can lead to fundamental advances for automatic control systems. These contributions provide new ideas and techniques that are broadly applicable to diverse areas of science and engineering. Broader Impacts Improving the ability to predict the trajectories of space debris can render the space environment safer in both the near term---by enhancing astronaut safety and satellite reliability---and the long term---by suppressing cascading collisions that could have a devastating impact on the usage of space. This project will impact real-world practice by developing techniques that are applicable to large-scale modeling and data collection, from weather prediction to Homeland Security. The research results will impact education through graduate and undergraduate research as well as through interdisciplinary modules developed for courses in space science, satellite engineering, optimization, and data-based modeling taught across multiple disciplines.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Bernstein, Dennis
Dennis Bernstein Submitted by Dennis Bernstein on April 7th, 2011
Vehicle automation has progressed from systems that monitor the operation of a vehicle, such as antilock brakes and cruise control, to systems that sense adjacent vehicles, such as emergency braking and intelligent cruise control. The next generation of systems will share sensor readings and collaborate to control braking operations by looking several cars ahead or by creating safe gaps for merging vehicles. Before we allow collaborative systems on public highways we must prove that they will do no harm, even when multiple rare events occur. The events will include loss of communications, failures or inaccuracies of sensors, mechanical failures in the automobile, aggressive drivers who are not participating in the system, and unusual obstacles or events on the roadways. The rules that control the interaction between vehicles is a protocol. There is a large body of work to verify the correctness of communications protocols and test that different implementations of the protocol will interact properly. However, it is difficult to apply these techniques to the protocols for collaborative driving systems because they are much more complex: 1) They interact with the physical world in more ways, through a network of sensors and the physical operation of the automobile as well as the communications channel; 2) They perform time critical operations that use multiple timers; And, 3) they may have more parties participating. In [1] we have verified that a three party protocol that assists a driver who wants to merge between two cars in an adjacent lane will not cause an accident for combinations of rare events. The verification uses a probabilistic sequence testing technique [2] that was developed for communications protocols. We were only able to use the communications technique after designing and specifying the collaborative driving protocol in a particular way. We have generalized the techniques used in the earlier work so that we can design collaborative driving protocols that can be verified. We have 1) a non-layered architecture, 2) a new class of protocols based upon time synchronized participants, and 3) a data management rule. 1) Communications protocols use a layered architecture. Protocol complexity is reduced by using the services provided by a lower layer. The layered architecture is not sufficient for collaborative driving protocols because they operate over multiple physical platforms. Instead, we define a smoke stack architecture that is interconnected. 2) The operation of protocols with multiple timers is more difficult to analyze because there are different sequences of operations depending on the relative times when the timers are initiated. Instead of using timers, we design protocols that use absolute time. This is reasonable because of the accurate time acquired from GPS and the accuracy of current clocks while GPS is not available. 3) Finally, in order for programs in different vehicles to make the same decisions they must use the same data. Our design merges the readings of sensors in different vehicles and uses a communications protocol that guarantees that all vehicles have the same sequence of messages and only use the messages that all vehicles have acquired. 1. Bohyun Kim, N. F. Maxemchuk, "A Safe Driver Assisted Merge Protocol," IEEE Systems Conference 2012, 19-22 Mar. 2012, Vancouver, BC, Canada, pp. 1-4. 2. N. F. Maxemchuk, K. K. Sabnani, "Probabilistic Verification of Communication Protocols," Distributed Computing Journal, Springer Verlag, no. 3, Sept. 1989, pp. 118-129.
Off
Columbia University
-
National Science Foundation
Maxemchuk, Nicholas
Nicholas Maxemchuk Submitted by Nicholas Maxemchuk on April 7th, 2011
Abstract The objective of this proposal is to hold a grantees meeting on July 8-9, 2009 focused on the potential of cyber-physical systems and their impact on our lives. The event, "Cyber-Physical Systems" Leading the Way to a Smarter, Safer Future for Anyone, Anywhere, Anytime?, This is a two-day event: the first day will take place at the National Science Foundation and will be dedicated to a dry-run session; the second day of the CPS event will take place at Capitol Hill and will include a luncheon with the members of the Senate followed by demonstrations and poster presentations of research work related to CPS. The invited audience includes 25 members of the Senate Commerce Committee and their staffs. Intellectual merit: The demonstration and posters will showcase state-of-the-art and innovative research projects describing the potential benefits of CPS to the society, while highlighting the research challenges that need to be address in order to realize the CPS vision. Broader Impact: The Grantees meeting will provide an opportunity to showcase the current accomplishments in the CPS to some of the senior senators, members of the Senate Commerce Committee and their staffs and to the NSF staff. The workshop will have participation from 12 institutions and their post Docs, graduate students and undergraduate students. It also includes participation and demonstration by the High school students. This will be a great opportunity for them to interact with other participants and learn about many exciting opportunities in the CPS area.
Off
University of Alabama Tuscaloosa
-
National Science Foundation
Anderson, Monica
Submitted by Monica Anderson on April 7th, 2011
Subscribe to CPS Technologies