The terms denote technology areas that are part of the CPS technology suite or that are impacted by CPS requirements.
The objective of this research is to develop the scientific foundation for the quantitative analysis and design of control networks. Control networks are wireless substrates for industrial automation control, such as the WirelessHART and Honeywell's OneWireless, and have fundamental differences over their sensor network counterparts as they also include actuation and the physical dynamics. The approach of the project focuses on understanding cross-cutting interfaces between computing systems, control systems, sensor networks, and wireless communications using time-triggered architectures. The intellectual merit of this research is based on using time-triggered communication and computation as a unifying abstraction for understanding control networks. Time-triggered architectures enable the natural integration of communication, computation, and physical aspects of control networks as switched control systems. The time-triggered abstraction will serve for addressing the following interrelated themes: Optimal Schedules via Quantitative Automata, Quantitative Analysis and Design of Control Networks: Wireless Protocols for Optimal Control: Quantitative Trust Management for Control Networks. Various components of this research will be integrated into the PIs' RAVEN control network which is compatible with both WirelessHART and OneWireless specifications. This provides a direct path for this proposal to have immediate industrial impact. In order to increase the broader impact of this project, this project will launch the creation of a Masters' program in Embedded Systems, one of the first in the nation. The principle that guides the curriculum development of this novel program is a unified systems view of computing, communication, and control systems.
Off
University of Pennsylvania
-
National Science Foundation
Alejandro Ribeiro
Pappas, George
George Pappas Submitted by George Pappas on April 7th, 2011
The objective of this research is to develop algorithms for wireless sensor-actuator networks (WSAN) that allow control applications and network servers to work together in maximizing control application performance subject to hard real-time service constraints. The approach is a model-based approach in which the WSAN is unfolded into a real-time fabric that captures the interaction between the network's cyber-processes and the application's physical-processes. The project's approach faces a number of challenges when they are applied to wireless control systems. This project addresses these challenges by 1) using network calculus concepts to pose a network utility maximization (NUM) problem that maximizes overall application performance subject to network capacity constraints, 2) using event-triggered message passing schemes to reduce communication overhead, 3) using nonlinear analysis methods to more precisely characterize the problem's utility functions, and 4) using anytime control concepts to assure robustness over wide variations in network connectivity. The project's impact will be broadened through interactions with industrial partner, EmNet LLC. The company will use this project's algorithms on its CSOnet system. CSOnet is a WSAN controlling combined-sewer overflows (CSO), an environmental problem faced by nearly 800 cities in the United States. The project's impact will also be broadened through educational outreach activities that develop a graduate level course on formal methods in cyber-physical systems. The project's impact will be broadened further through collaborations with colleagues working on networked control systems under the European Union's WIDE project.
Off
University of Notre Dame
-
National Science Foundation
Lemmon, Michael
Michael Lemmon Submitted by Michael Lemmon on April 7th, 2011
The objective of this research is the transformation from static sensing into mobile, actuated sensing in dynamic environments, with a focus on sensing in tidally forced rivers. The approach is to develop inverse modeling techniques to sense the environment, coordination algorithms to distribute sensors spatially, and software that uses the sensed environmental data to enable these coordination algorithms to adapt to new sensed conditions. This work relies on the concurrent sensing of the environment and actuation of those sensors based on sensed data. Sensing the environment is approached as a two-layer optimization problem. Since mobile sensors in dynamic environments may move even when not actuated, sensor coordination and actuation algorithms must maintain connectivity for the sensors while ensuring those sensors are appropriately located. The algorithms and software developed consider the time scales of the sensed environment, as well as the motion capabilities of the mobile sensors. This closes the loop from sensing of the environment to actuation of the devices that perform that sensing. This work is addresses a challenging problem: the management of clean water resources. Tidally forced rivers are critical elements in the water supply for millions of Californians. By involving students from underrepresented groups, this research provides a valuable opportunity for students to develop an interest in engineering and to learn first hand about the role of science and engineering in addressing environmental issues.
Off
University of California-San Diego
-
National Science Foundation
Martinez, Sonia
Sonia Martinez Submitted by Sonia Martinez on April 7th, 2011
This proposed CPS project aims to enable intelligent telesurgery in which a surgeon, or a distributed team of surgeons, can work on tiny regions in the body with minimal access. The University of Washington will expand an existing open surgical robot testbed, and create a robust infrastructure for cyber-physical systems with which to extend traditional real-time control and teleoperation concepts by adding three new interfaces to the system: networking, intelligent robotics, and novel non-linear controllers. Intellectual Merit: This project aims to break new ground beyond teleoperation by adding advanced robotic functions. Equally robust and flexible networking, high-level interfaces, and novel controllers will be added to the existing sytsem. The resulting system will be an open architecture and a substrate upon which many cyber-physical system ideas and algorithms will be tested under realistic conditions. The platforms proven physical robustness will permit rigorous evaluation of results and the open interfaces will encourage collaboration and sharing of results. Broader Impacts: We expect the results to enable new research in multiple ways. First, the collaborators such as Johns Hopkins, U.C. Santa Cruz, and several foreign institutions will be able to remotely connect to new high level interfaces provided by this project. Second, for the first time a robust and completely open surgical telerobot will be available for research so that CPS researchers do not need to be limited to isolated toy problems but instead be able to prototype advanced surgical robotics techniques and evaluate them in realistic contexts including animal procedures.
Off
University of Washington
-
National Science Foundation
Hannaford, Blake
Blake Hannaford Submitted by Blake Hannaford on April 7th, 2011
The objective of this research is the transformation from static sensing into mobile, actuated sensing in dynamic environments, with a focus on sensing in tidally forced rivers. The approach is to develop inverse modeling techniques to sense the environment, coordination algorithms to distribute sensors spatially, and software that uses the sensed environmental data to enable these coordination algorithms to adapt to new sensed conditions. This work relies on the concurrent sensing of the environment and actuation of those sensors based on sensed data. Sensing the environment is approached as a two-layer optimization problem. Since mobile sensors in dynamic environments may move even when not actuated, sensor coordination and actuation algorithms must maintain connectivity for the sensors while ensuring those sensors are appropriately located. The algorithms and software developed consider the time scales of the sensed environment, as well as the motion capabilities of the mobile sensors. This closes the loop from sensing of the environment to actuation of the devices that perform that sensing. This work is addresses a challenging problem: the management of clean water resources. Tidally forced rivers are critical elements in the water supply for millions of Californians. By involving students from underrepresented groups, this research provides a valuable opportunity for students to develop an interest in engineering and to learn first hand about the role of science and engineering in addressing environmental issues.
Off
University of Arizona
-
National Science Foundation
Sprinkle, Jonathan
Jonathan Sprinkle Submitted by Jonathan Sprinkle on April 7th, 2011
The goal of the proposed research is to identify ways to inexpensively provide specific information about energy consumption in buildings and facilitate conservation. Signal processing, machine learning, and data fusion techniques will be developed to extract actionable information from whole-building power meters and other available sensors. The main objectives are: (a) to create a framework for obtaining disaggregated, appliance-specific feedback about electricity consumption in a building by extracting high-value information from low-cost data sources; and (b) to investigate and develop data mining and machine learning algorithms for making use of appliance-specific electricity data, in order to provide users with recommendations on how to optimize their energy consumption and understand the effects of their energy-related decisions. A series of residential buildings in Pittsburgh, PA will serve as a test-bed for evaluating and validating our proposed approach. Blueroof Technologies, a non-profit corporation located in McKeesport, PA that researches, develops and provides affordable senior-citizen housing with integrated sensor networks and building automation systems, will provide access to their Research Cottages for this project. Similarly, Robert Bosch LLC, a leading global provider of consumer goods and building technology, will provide additional technical research assistance and expertise. The main scientific merit of the project is the development of a framework for evaluating energy-use-disaggregation methods according to their value for promoting energy conservation. The resulting data sets will be large enough to produce significant conclusions about the feasibility and effectiveness of the technology, and allow for the development of new models about the trends and patterns of appliance usage in buildings. Broader impacts of this research include providing a foundation for future cyber-physical systems by inexpensively obtaining real-time appliance-level data. Such data can be used to help reduce the energy consumption of buildings by revealing the relationship between users' behavior and electricity consumption in buildings. The proposed industry-university collaborative research effort with Bosch will ensure that the technology and scientific contributions are steered toward innovative solutions that are practical for adoption in the market. Furthermore, the project will have significant diversity contributions by attracting minority students through collaboration with the University of Maryland Eastern Shore, a land-grant, historically black college with a diverse student body. Finally, a series of planned industry seminars, workshops and the publication of journal articles will allow further dissemination of the work.
Off
Carnegie Mellon University
-
National Science Foundation
Jose Moura
H. Scott Matthews
Burton Andrews
Diego Benitez
Mario Berges
Mario Berges Submitted by Mario Berges on April 7th, 2011
This objective of this proposal is to improve the management of the air traffic system, a cyber-physical system where the need for a tight connection between the computational algorithms and the physical system is critical to safe, reliable and efficient performance. The approach is based on an adaptive multi-agent coordination algorithm with a particular emphasis on the systematic selection of the agents, their actions and the agents' reward functions. The intellectual merit lies in addressing the agent coordination problem in a physical setting by shifting the focus from ``how to learn" to ``what to learn." This paradigm shift allows a separation between the learning algorithms used by agents, and the reward functions used to tie those learning systems into system performance. By exploring agent reward functions that implicitly model agent interactions based on feedback from the real world, this work aims to build cyber-physical systems where an agent that learns to optimize its own reward leads to the optimization of the system objective function. The broader impact is in providing new air traffic flow management algorithms that will significantly reduce air traffic congestion. The potential impact cannot only be measured in currency ($41B loss in 2007) but in terms of improved experience by all travelers, providing a significant benefit to society. In addition, the PIs will use this project to train graduate and undergraduate students (i) by developing new courses in multi-agent learning for transportation systems; and (ii) by providing summer internship opportunities at NASA Ames Research Center.
Off
University of California-Santa Cruz
-
National Science Foundation
Agogino, Adrian
Adrian Agogino Submitted by Adrian Agogino on April 7th, 2011
The objective of this research is the development of novel control architectures and computationally efficient controller design algorithms for distributed cyber-physical systems with decentralized information infrastructures and limited communication capabilities. Active safety in Intelligent Transportation Systems will be the focus cyber-physical application. For the successful development and deployment of cooperative active safety systems, it is critical to develop theory and techniques to design algorithms with guaranteed safety properties and predictable behavior. The approach is to develop a new methodology for the design of communicating distributed hybrid controllers by integrating in a novel manner discrete-event controller design and hybrid controller design and optimization. The methodology to be developed will exploit problem decomposition and will have significant technological impact for a large class of cyber-physical systems that share features of modularity in system representation, partial information, and limited communication. The focus on distributed control strategies with limited communication among agents is addressing an important gap in existing control theories for cyber-physical systems. The approach will mitigate the computational limitations of existing approaches to control design for hybrid systems. Given the focus on cooperative active safety in Intelligent Transportation Systems, the results of this effort will have significant societal impact in terms of increased traffic safety and reduced number and severity of accidents. The broader impacts of this proposal also include involvement of high-school and undergraduate students and curriculum development by incorporating results of research into existing courses on cyber-physical systems.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Lafortune, Stephane
Stephane Lafortune Submitted by Stephane Lafortune on April 7th, 2011
The document defines the CPS research agenda in Germany. First it describes the rapidly growing research field of CPS. It provides a brief introduction to CPS, describing the capabilities and the many opportunities for application and new business models. The opportunities and challenges for technology, society and the economy associated with the profound change are analysed on the basis of an investigation into the characteristic features and capabilities of CPS. Overcoming these challenges is the aim of the as yet undefined CPS research agenda.
Submitted by Anonymous on February 18th, 2011
Janos Sztipanovits Submitted by Janos Sztipanovits on November 10th, 2010
Subscribe to CPS Technologies