Hardware architecture and a software framework, where the combination allows software to run.
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce. Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Off
Northeastern University
-
National Science Foundation
Deniz Erdogmus Submitted by Deniz Erdogmus on March 31st, 2016
Event
NetSoft 2016
2nd IEEE CONFERENCE ON NETWORK SOFTWARIZATION – NetSoft 2016 Softwarization of Networks, Clouds, and Internet of Things The IEEE International Conference on Network Softwarization (NetSoft 2016) will be held in beautiful Seoul, Korea. NetSoft is the flagship event established as part of the IEEE Software-Defined Networks (SDN) Initiative of the IEEE Future Directions Committee.
Submitted by Anonymous on March 31st, 2016
ELEVENTH IEEE INTERNATIONAL WORKSHOP ON PRACTICAL ISSUES IN BUILDING SENSOR NETWORK APPLICATIONS (SENSEAPP 2016)  (in conjunction with IEEE LCN 2016)
Submitted by Anonymous on March 25th, 2016
Event
CASES 2016
Compilers, Architecture and Synthesis of Embedded Systems Conference (CASES 2016) Part of Embedded Systems Week (ESWeek  is the premier event covering all aspects of embedded systems and software.) About CASES:
Submitted by Anonymous on March 25th, 2016
Event
ViPES 2016
4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES'2016) The 4th Workshop on Virtual Prototyping of Parallel and Embedded Systems (ViPES 2016) will be held at Samos Island, Greece on July 17th, 2016. ViPES 2016 is co-located with the International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). Virtual prototyping stands for the development of hardware/software systems without using a real hardware prototype, i.e.
Submitted by Anonymous on March 24th, 2016
Event
MORSE 2016
MORSE 2016 - Third Workshop on Model-Driven Robot Software Engineering MORSE'16 is co-located with the RoboCup 2016. RoboCup Date: June 30 - July 4 2016 Workshop Date: July 1, 2016 Location: Messe Leipzig, Leipzig, Germany Website: http://st.inf.tu-dresden.de/MORSE16
Submitted by Anonymous on March 11th, 2016
The objective of this research is to design a semi-automated, efficient, and secure emergency response system to reduce the time it takes emergency vehicles to reach their destinations, while increasing the safety of non-emergency vehicles and emergency vehicles alike. Providing route and maneuver guidance to emergency vehicles and non-emergency vehicles will make emergency travel safer and enable police and other first responders to reach and transport those in need, in less time. This should reduce the number of crashes involving emergency vehicles and associated litigation costs while improving medical outcomes, reducing property damage, and instilling greater public confidence in emergency services. At the same time, non-emergency vehicles will also be offered increased safety and, with the reduction of long delays attributed to emergency vehicles, experience reduced incident-related travel time, which will increase productivity and quality of life for drivers. Incorporating connected vehicles into the emergency response system will also provide synergistic opportunities for non-emergency vehicles, including live updates on accident sites, areas to avoid, and information on emergency routes that can be incorporated into navigation software so drivers can avoid potential delays. While the proposed system will naturally advance the quality of transportation in smart cities, it will also provide a platform for future techniques to build upon. For example, the proposed system could be connected with emergency care facilities to balance the load of emergency patients at hospitals, and act as a catalyst toward the realization of a fully-automated emergency response system. New courses and course modules will be developed to recruit and better prepare a future workforce that is well versed in multi-disciplinary collaborations. Video demos and a testbed will be used to showcase the research to the public. The key research component will be the design of an emergency response system that (1) dynamically determines EV routes, (2) coordinates actions by non-emergency vehicles using connected vehicle technology to efficiently and effectively clear paths for emergency vehicles, (3) is able to adapt to uncertain traffic and network conditions, and (4) is difficult to abuse or compromise. The project will result in (1) algorithms that dynamically select EV routes based on uncertain or limited traffic data, (2) emergency protocols that exploit connected vehicle technology to facilitate emergency vehicles maneuvers, (3) an automation module to assist with decision making and maneuvers, and (4) an infrastructure and vehicle hardening framework that prevents cyber abuse. Experiments will be performed on a testbed and a real test track to validate the proposed research.
Off
Utah State University
-
National Science Foundation
Ryan Gerdes
Submitted by Tam Chantem on March 10th, 2016
Event
DMA 2016
Second International Conference on Data Mining and Applications (DMA 2016) March 26~27,2016 | Geneva,Switzerland | http://cosit2016.org/dma/index.html Scope & Topics
Submitted by airccfp journal on February 11th, 2016
Event
WOCO 2016
1st IFAC/IFIP Workshop on Computers and Control (WOCO 2016) Sponsored and Organised by IFAC TC3.1 Technical Committee on Computers for Control Co-Sponsored by IFIP WG 10.5 Design and Engineering of Electronic Systems WOCO 2016 is the first IFAC Workshop on Computer and Control following previous workshops organized by IFAC Technical Committee 3.3 as Workshop on Real-Time Programming (WRTP) and Algorithms and Architectures for Real-Time Control (AARTC) that were successfully organised during 30 editions.
Submitted by Anonymous on January 28th, 2016
Event
ACVI16
Workshop on Architecture Centric Virtual Integration at WICSA and CompArch 2016 | http://www.aadl.info/aadl/acvi/acvi2016/ Important dates
Submitted by Julien Delange on January 7th, 2016
Subscribe to Platforms