Hardware architecture and a software framework, where the combination allows software to run.
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications. The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics. The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Aaron Ames Submitted by Aaron Ames on December 22nd, 2015
A wide range of health outcomes is affected by air pollution. In March 2014 the World Health Organization (WHO) released a report that in 2012 alone, a staggering 7 million people died as a result of air pollution exposure, one in eight of total global deaths. A major component of this pollution is airborne particulate matter, with approximately 50 million Americans have allergic diseases. This project will develop and field the first integrated IoT in-situ sensor package tracking pollution and pollen to provide airborne particulate mapping for Chattanooga. Longer term it is hoped that the data collection approach and initial visualization tools developed in Chattanooga can be used to support a nationwide, open access dissemination platform on the order of Google's StreetView, but called PollutionView. Such scaling of the project's pilot results through a PollutionView tool will contribute significantly to a transformation of the Environmental Public Health field in the United States. The project involves real-time big data analysis at a fine-grain geographic level. This will involve trades with sensing and computing especially if the sensor package is to be deployed at scale. The project will help determine if real-time allergen collection and visualization can improve health and wellness. Thus, this project will combine Cyber Physical Systems (CPS) and gigabit networks to address major health concerns due to air pollution. A working demonstration of this project will be presented during the Global City Teams meeting in June 2015 with an update in June 2016. Airborne particulate matter particularly affects the citizens of Chattanooga, TN. The objectives of this project are twofold: first, to develop and deploy an array of Internet of Things (IoT) in-situ sensors within Chattanooga capable of comprehensively characterizing air quality in real time, including location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S), and the abundance of airborne particulates (10-40 µm), both pollen-sized and smaller PM2.5 (<2.5 µm) particles; and second, to have a pollen validation campaign by deploying an in-situ pollen air sampler in Chattanooga to identify specific pollen types.
Off
University of Texas at Dallas
-
National Science Foundation
David Lary Submitted by David Lary on December 22nd, 2015
The concept of a "smart city" is ubiquitous with data; however, most urban data today lacks the spatial and temporal resolution to understand processes that unfold on timescales of seconds or minutes, such as the dispersion of pollutants. A better understanding of these dynamics can provide information to residents, cyclists or pedestrians who may wish to use air quality data as they navigate urban spaces. This project leverages existing street furniture, integrating air quality and environmental sensors into commercial solar powered, networked waste stations. Sensors embedded in BigBelly waste stations in Chicago and other cities will collect data that will allow researchers to explore critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. The partnership with BigBelly, with nearly 30,000 waste stations in place globally, provides a channel through which sensors can be deployed in many cities. The project brings together computer science, cyber-physical systems, distributed systems, and sensor systems expertise to explore technical and societal challenges and opportunities of urban-scale embedded systems in the public sphere, initially related to understanding and ultimately managing urban air quality. Sensors embedded in BigBelly waste stations in Chicago and other cities will explore (1) the spatial and temporal dynamics of air quality in urban canyons, informing the sensor network resolution needed to drive traffic change policies and to provide healthy air quality routing information to cyclists and pedestrians; and (2) how urban topology (natural and built) affects these dynamics and associated required measurement resolutions. These are critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. Critical challenges include (1) power management with respect to sensor sampling, in-situ processing, and transmission; (2) ensuring data quality; and (3) providing data in forms that are actionable and understandable to policy makers and the general public. All data will be published in near-real time with web-based analysis tools for use by scientists, educators, policy makers, and residents, and with application programming interfaces (API's) for application development. By developing an open source, readily deployed urban embedded systems infrastructure leveraging a widely deployed commercial platform, the project can enable science, education, and outreach in many cities, national parks, and educational institutions worldwide.
Off
University of Chicago
-
National Science Foundation
Submitted by Charles Catlett on December 22nd, 2015
The objective of this research is to understand the complexities associated with integration between humans and cyber-physical systems (CPS) at large scales. For this purpose, the team will develop and demonstrate the application of Smart City Hubs focusing on intelligent transportation services in urban settings. Ultimately, this project will produce innovative tools and techniques to configure and deploy large-scale scale experiments enabling the study of how humans affect the control loops in large CPS such as smart cities. This work covers several design concerns that are specific to human-CPS such as human computer interfaces, decision support systems and incentives engineering to keep humans engaged with the system. The technology base will include a novel integration platform for allowing (1) integration of spatially and temporally distributed sensor streams; (2) integration of simulation-based decision support systems, (3) development and execution of experiments to understand how advanced decision support tools combined with incentive mechanisms improve the utilization of the transportation infrastructure and user experience. A key aspect of this research will be development of data-driven rider models that can be subsequently used by city engineers for planning purposes. The proposed system will enable a new generation of human-CPS systems where sensing, wireless communication, and data-driven predictive analytics is combined with human decision-making and human-driven actuation (driving and physical infrastructure utilization) to form a control loop. The Smart City Hub provides a generic platform for a number of other services beyond traffic and public transportation, including maps and way finding, municipal communication, emergency management and others. The tools that will be developed will allow researchers and practitioners to more quickly prototype, deploy and experiment with these CPS. To ensure these benefits, the research team will make its research infrastructure freely available as an open-source project. It will also develop educational materials focused on modeling, prototyping and evaluating these applications at scale. In addition, the studies the team will perform will provide new data and new scientific understanding of large-scale human interaction with CPS, which it expects will yield long-term benefits in the design and analysis of such applications.
Off
Vanderbilt University
-
National Science Foundation
Abhishek Dubey Submitted by Abhishek Dubey on December 22nd, 2015
Millions of mobile applications (apps) are being developed in domains such as energy, health, security, and entertainment. The US FDA expects that there will be 500 million smart phone users downloading healthcare related apps by the end of 2015. Many of these apps will perform interventions to control human physiological parameters such as blood pressure and heart rate. The intervention aspects of the apps can cause dependency problems, e.g., multiple interventions of multiple apps can increase or decrease each other's effects, some of which can be harmful to the user. Detecting and resolving these dependencies are the main goals of this project. Success in this research can significantly improve the safety of home health care. This project will develop EyePhy, a completely new approach to primary and secondary dependency analysis for wellness and mobile medical apps based on smart phones. The approach offers personalized dependency analysis and accounts for time dependent interventions such as time interval for which a drug or other intervention is effective. To do that, EyePhy uses a physiological simulator called HumMod which was developed by the medical community to model the complex interactions of the human physiology using over 7800 variables. Among the goals of EyePhy are the reduction of app developers' effort in specifying dependency metadata compared to state of the art solutions, offering personalized dependency analysis for the user, and identifying problems in real time, as medical app products are being used. Such dependency problems occur mainly because (i) each app is developed independently without knowing how other apps work and (ii) when an app performs an intervention to control its target parameters (e.g., blood pressure), it may affect other physiological parameters (e.g., kidney) without even knowing it. A priori proofs that individual cyber-physical systems (CPS) app devices are safe cannot guarantee how it will be used and with which other (future) apps it may be run concurrently. It is becoming more common for people to use multiple apps. The average person will not understand how multiple apps might affect his health due to hidden dependencies among a large number of parameters. Consequently, a tool such as EyPhy is critical to future deployments of safe mobile medical apps.
Off
University of Virginia Main Campus
-
National Science Foundation
John Stankovic Submitted by John Stankovic on December 22nd, 2015
The focus of this project is on creating new techniques for understanding population analytics over a space of interest, e.g., a shopping mall, a busy street, or an entire city. Knowledge of population behavior important for many applications. For instance, knowledge of which are the busy corners of city sidewalk can provide city planners with input on where to invest city resources. Knowledge of where people congregate in a shopping mall allows officials to plan where to provide useful services, e.g., information kiosks, floor plans, and more. The process of gathering population analytics today is tedious -- some stores and shops use manual people counters to track how many persons are entering wireless technologies. The technical contributions of this project are two-fold. First, it is attempting to reduce the complexity of determining location of people by reducing the number of infrastructure points needed. Second, automated approaches to population analytics are fraught with privacy concerns, and this project is examining techniques that mitigate such concerns. Personnel involved in this project will be trained in significant technical skills across a broad set of domains including wireless technologies, privacy techniques, and machine learning. To demonstrate the feasibility of this project, the PI team is deploying a version of the system in an urban downtown area of Madison, WI. The team is collaborating with a number of local partners -- the city of Madison, the University of Wisconsin Bookstore, 5NINES (a local Internet Service Provider), and a few local participants. Together they are entering this technology demonstration as part of the Global City Teams Challenge being hosted by NSF and NIST.
Off
University of Wisconsin-Madison
-
National Science Foundation
Submitted by Suman Banerjee on December 22nd, 2015
Device authentication and identification has been recently cited as one of the most pressing security challenges facing the Internet of things (IoT). In particular, the open-access nature of the IoT renders it highly susceptible to insider attacks. In such attacks, adversaries can capture or forge the identity of the small, resource constrained IoT devices and, thus, bypass conventional authentication methods. Such attacks are challenging to defend against due to the apparent legitimacy of the adversaries' devices. The primary goal of this research is to overcome this challenge by developing new authentication methods that supplement traditional security solutions with cyber-physical fingerprints extracted from the IoT devices' environment. This project will develop a novel machine learning framework that enables the IoT to dynamically identify, classify, and authenticate devices based on their cyber-physical environment and with limited available prior data. This will result in the creation of environment-based IoT device credentials that can serve as a means of attestation, not only on the legitimacy of a device's identity, but also on the validity of the physical environment it claims to monitor and the actions it claims to be performing over time. The framework will also encompass an experimental IoT software platform that will be built to validate the proposed research. Owing to a partnership with the NIST Global City Teams Challenge (GCTC) project "Bringing Internet of Things Know-How to High School Students", a collaboration with IoT-DC, Arlington County, VA, and other entities, the proposed research will train high school students, STEM educators, and a broad community on a variety of research topics that will include IoT security, cyber-physical systems, and data analytics. The broader impacts will also include the creation of an interdisciplinary workforce focused on securing tomorrow's smart cities.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
Submitted by Walid Saad on December 22nd, 2015
This project advances the scientific knowledge on design methods for improving the resilience of civil infrastructures to disruptions. To improve resilience, critical services in civil infrastructure sectors must utilize new diagnostic tools and control algorithms that ensure survivability in the presence of both security attacks and random faults, and also include the models of incentives of human decision makers in the design process. This project will develop a practical design toolkit and platform to enable the integration of resiliency-improving control tools and incentive schemes for Cyber-Physical Systems (CPS) deployed in civil infrastructures. Theory and algorithms will be applied to assess resiliency levels, select strategies to improve performance, and provide reliability and security guarantees for sector-specific CPS functionalities in water, electricity distribution and transportation infrastructures. The main focus is on resilient design of network control functionalities to address problems of incident response, demand management, and supply uncertainties. More broadly, the knowledge and tools from this project will influence CPS designs in water, transport, and energy sectors, and also be applicable to other systems such as supply-chains for food, oil and gas. The proposed platform will be used to develop case studies, test implementations, and design projects for supporting education and outreach activities. Current CPS deployments lack integrated components designed to survive in uncertain environments subject to random events and the actions of strategic entities. The toolkit (i) models the propagation of disruptions due to failure of cyber-physical components, (ii) detects and responds to both local and network-level failures, and (iii) designs incentive schemes that improve aggregate levels of public good (e.g., decongestion, security), while accounting for network interdependencies and private information among strategic entities. The validation approach uses real-world data collected from public sources, test cases developed by domain experts, and simulation software. These tools are integrated to provide a multi-layer design platform, which explores the design space to synthesize solutions that meet resiliency specifications. The platform ensures that synthesized implementations meet functionality requirements, and also estimates the performance guarantees necessary for CPS resilience. This modeling, validation, exploration, and synthesis approach provides a scientific basis for resilience engineering. It supports CPS education by providing a platform and structured workflow for future engineers to approach and appreciate implementation realities and socio-technical constraints.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Saurabh Amin Submitted by Saurabh Amin on December 22nd, 2015
SCALE2 explores the design of resilient, inexpensive cyber-physical systems (CPS) technologies to create community-wide smartspaces for public/personal safety. SCALE2 aims to demonstrate that community safety can be realized by augmenting CPS technologies with end-to-end resilience mechanisms. Such a study requires real-world community-scale deployments to understand citizen concerns and can only be achieved through partnerships between various stakeholders - researchers, government agencies, and industry. The SCALE2 multisensory platform will use inexpensive Internet of things (IoT) components, and support dependable operation by enabling resilient information-flow through multiple system layers. Research will explore mechanisms for (a) ingest of real-time data through flexible rich data models, (b) Quality of Service (QoS)-aware messaging to cloud platforms, and (c) reliable detection of higher-level community events through semantics-driven virtual sensing. SCALE2, through its established partnerships/testbeds, offers a unique short-term opportunity to guide future resilience technologies, train the next generation of students and have broader community impact. SCALE2 will be deployed at Montgomery County, MD, and the Irvine-Sensorium working with local agencies.
Off
University of California-Irvine
-
National Science Foundation
Nalini Venkatasubramanian Submitted by Nalini Venkatasubramanian on December 22nd, 2015
Tracking Fish Movement with a School of Gliding Robotic Fish This project is focused on developing the technology for continuously tracking the movement of live fish implanted with acoustic tags, using a network of relatively inexpensive underwater robots called gliding robotic fish. The research addresses two fundamental challenges in the system design: (1) accommodating significant uncertainties due to environmental disturbances, communication delays, and apparent randomness in fish movement, and (2) balancing competing objectives (for example, accurate tracking versus long lifetime for the robotic network) while meeting multiple constraints on onboard computing, communication, and power resources. Fish movement data provide insight into choice of habitats, migratory routes, and spawning behavior. By advancing the state of the art in fish tracking technology, this project enables better-informed decisions for fishery management and conservation, including control of invasive species, restoration of native species, and stock assessment for high-valued species, and ultimately contributes to the sustainability of fisheries and aquatic ecosystems. By advancing the coordination and control of gliding robotic fish networks and enabling their operation in challenging environments such as the Great Lakes, the project also facilitates the practical adoption of these robotic systems for a myriad of other applications in environmental monitoring, port surveillance, and underwater structure inspection. The project enhances several graduate courses at Michigan State University, and provides unique interdisciplinary training opportunities for students including those from underrepresented groups. Outreach activities, including robotic fish demos, museum exhibits, teacher training, and "Follow That Fish" smartphone App, are specifically designed to pique the interest of pre-college students in science and engineering. The goal of this project is to create an integrative framework for the design of coupled robotic and biological systems that accommodates system uncertainties and competing objectives in a rigorous and holistic manner. This goal is realized through the pursuit of five tightly coupled research objectives associated with the application of tracking and modeling fish movement: (1) developing new robotic platforms to enable underwater communication and acoustic tag detection, (2) developing robust algorithms with analytical performance assurance to localize tagged fish based on time-of-arrival differences among multiple robots, (3) designing hidden Markov models and online model adaptation algorithms to capture fish movement effectively and efficiently, (4) exploring a two-tier decision architecture for the robots to accomplish fish tracking, which incorporates model-predictions of fish movement, energy consumption, and mobility constraints, and (5) experimentally evaluating the design framework, first in an inland lake for localizing or tracking stationary and moving tags, and then in Thunder Bay, Lake Huron, for tracking and modeling the movement of lake trout during spawning. This project offers fundamental insight into the design of robust robotic-physical-biological systems that addresses the challenges of system uncertainties and competing objectives. First, a feedback paradigm is presented for tight interactions between the robotic and biological components, to facilitate the refinement of biological knowledge and robotic strategies in the presence of uncertainties. Second, tools from estimation and control theory (e.g., Cramer-Rao bounds) are exploited in novel ways to analyze the performance limits of fish tracking algorithms, and to guide the design of optimal or near-optimal tradeoffs to meet multiple competing objectives while accommodating onboard resource constraints. On the biology side, continuous, dynamic tracking of tagged fish with robotic networks represents a significant step forward in acoustic telemetry, and results in novel datasets and models for advancing fish movement ecology.
Off
Michigan State University
-
National Science Foundation
Guoliang Xing
Charles Krueger
Submitted by Xiaobo Tan on December 22nd, 2015
Subscribe to Platforms