The formalization of system engineering models and approaches.
Event
IFSM16
Third International Workshop on Information Fusion for Smart Mobility Solutions (IFSMS15) In conjunction with the 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks EUSPN 2016.
Submitted by Anonymous on January 27th, 2016
Event
VVCPS 2016
1st International Workshop on Verification and Validation of Cyber-Physical Systems (V2CPS) co-located with iFM 2016
Submitted by Anonymous on January 22nd, 2016
Event
ACVI16
Workshop on Architecture Centric Virtual Integration at WICSA and CompArch 2016 | http://www.aadl.info/aadl/acvi/acvi2016/ Important dates
Submitted by Julien Delange on January 7th, 2016
Event
PETRA 2016
9th International Conference on PErvasive Technologies Related  to Assistive Environments (PETRA 2016) The PETRA conference is a highly interdisciplinary conference that focuses on computational and engineering approaches to improve the quality of life and enhance human performance in a wide range of settings, in the workplace, at home, in public spaces, urban environments, and other.
Submitted by Anonymous on December 23rd, 2015
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
SUNY at Stony Brook
-
National Science Foundation
Submitted by Shan Lin on December 22nd, 2015
Water is a critical resource and a lifeline service to communities worldwide; the generation, treatment, distribution and maintenance of water workflows is typically managed by local governments and water districts. Recent events such as water supply disruptions caused by Hurricane Sandy in 2012 and the looming California drought crisis clearly indicate society's dependence on critical lifeline services such as water and the far-reaching impacts that its disruption can cause. Over the years, these critical infrastructures have become more complex and often more vulnerable to failures. The ability to view water workflows as a community wide cyber-physical system (CPS) with multiple levels of observation/control and diverse players (suppliers, distributors, consumers) presents new possibilities. Designing robust water systems involves a clear understanding of the structure, components and operation of this CPS system and how community infrastructure dynamics (e.g. varying demands, small/large disruptions) impact lifeline service availabilities and how service level decisions impact infrastructure control. The proposal emphasizes a new approach to exploring engineering systems that will result in substantial advances in the understanding of lifeline systems and approaches to make them adaptive and resilient. Building resilience into urban lifelines raises a number of monumental challenges including identifying the aspects of systems that can be observed/sensed and adapted and to developing general principles that can guide adaptation. The key idea is to develop methodologies to understand operational performance and resilience issues for real-world community water infrastructures and explore solutions to problems in cyberspace before instantiating them into a physical infrastructure. The effort includes: 1) Developing a flexible modeling framework that captures system needs at multiple levels of temporal and spatial abstraction; 2) Developing real-time algorithms supporting resilience; 3) Designing adaptations for water systems using a data-driven approach; and 4) Demonstrating the important broader impact of the research on critical water system infrastructure at the Global City Technology Challenge and the longer term impact on infrastructure for a resilient control framework.
Off
ImageCat, Inc.
-
National Science Foundation
Submitted by Ronald Eguchi on December 22nd, 2015
Water is a critical resource and a lifeline service to communities worldwide; the generation, treatment, distribution and maintenance of water workflows is typically managed by local governments and water districts. Recent events such as water supply disruptions caused by Hurricane Sandy in 2012 and the looming California drought crisis clearly indicate society's dependence on critical lifeline services such as water and the far-reaching impacts that its disruption can cause. Over the years, these critical infrastructures have become more complex and often more vulnerable to failures. The ability to view water workflows as a community wide cyber-physical system (CPS) with multiple levels of observation/control and diverse players (suppliers, distributors, consumers) presents new possibilities. Designing robust water systems involves a clear understanding of the structure, components and operation of this CPS system and how community infrastructure dynamics (e.g. varying demands, small/large disruptions) impact lifeline service availabilities and how service level decisions impact infrastructure control. The proposal emphasizes a new approach to exploring engineering systems that will result in substantial advances in the understanding of lifeline systems and approaches to make them adaptive and resilient. Building resilience into urban lifelines raises a number of monumental challenges including identifying the aspects of systems that can be observed/sensed and adapted and to developing general principles that can guide adaptation. The key idea is to develop methodologies to understand operational performance and resilience issues for real-world community water infrastructures and explore solutions to problems in cyberspace before instantiating them into a physical infrastructure. The effort includes: 1) Developing a flexible modeling framework that captures system needs at multiple levels of temporal and spatial abstraction; 2) Developing real-time algorithms supporting resilience; 3) Designing adaptations for water systems using a data-driven approach; and 4) Demonstrating the important broader impact of the research on critical water system infrastructure at the Global City Technology Challenge and the longer term impact on infrastructure for a resilient control framework.
Off
University of California at Irvine
-
National Science Foundation
Nalini Venkatasubramanian Submitted by Nalini Venkatasubramanian on December 22nd, 2015
The concept of a "smart city" is ubiquitous with data; however, most urban data today lacks the spatial and temporal resolution to understand processes that unfold on timescales of seconds or minutes, such as the dispersion of pollutants. A better understanding of these dynamics can provide information to residents, cyclists or pedestrians who may wish to use air quality data as they navigate urban spaces. This project leverages existing street furniture, integrating air quality and environmental sensors into commercial solar powered, networked waste stations. Sensors embedded in BigBelly waste stations in Chicago and other cities will collect data that will allow researchers to explore critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. The partnership with BigBelly, with nearly 30,000 waste stations in place globally, provides a channel through which sensors can be deployed in many cities. The project brings together computer science, cyber-physical systems, distributed systems, and sensor systems expertise to explore technical and societal challenges and opportunities of urban-scale embedded systems in the public sphere, initially related to understanding and ultimately managing urban air quality. Sensors embedded in BigBelly waste stations in Chicago and other cities will explore (1) the spatial and temporal dynamics of air quality in urban canyons, informing the sensor network resolution needed to drive traffic change policies and to provide healthy air quality routing information to cyclists and pedestrians; and (2) how urban topology (natural and built) affects these dynamics and associated required measurement resolutions. These are critical questions that must be understood in order to begin to develop and drive policies, measurement strategies, and predictive computational models related to the feedback loop between traffic flow and air quality. Critical challenges include (1) power management with respect to sensor sampling, in-situ processing, and transmission; (2) ensuring data quality; and (3) providing data in forms that are actionable and understandable to policy makers and the general public. All data will be published in near-real time with web-based analysis tools for use by scientists, educators, policy makers, and residents, and with application programming interfaces (API's) for application development. By developing an open source, readily deployed urban embedded systems infrastructure leveraging a widely deployed commercial platform, the project can enable science, education, and outreach in many cities, national parks, and educational institutions worldwide.
Off
University of Chicago
-
National Science Foundation
Submitted by Charles Catlett on December 22nd, 2015
The objective of this research is to understand the complexities associated with integration between humans and cyber-physical systems (CPS) at large scales. For this purpose, the team will develop and demonstrate the application of Smart City Hubs focusing on intelligent transportation services in urban settings. Ultimately, this project will produce innovative tools and techniques to configure and deploy large-scale scale experiments enabling the study of how humans affect the control loops in large CPS such as smart cities. This work covers several design concerns that are specific to human-CPS such as human computer interfaces, decision support systems and incentives engineering to keep humans engaged with the system. The technology base will include a novel integration platform for allowing (1) integration of spatially and temporally distributed sensor streams; (2) integration of simulation-based decision support systems, (3) development and execution of experiments to understand how advanced decision support tools combined with incentive mechanisms improve the utilization of the transportation infrastructure and user experience. A key aspect of this research will be development of data-driven rider models that can be subsequently used by city engineers for planning purposes. The proposed system will enable a new generation of human-CPS systems where sensing, wireless communication, and data-driven predictive analytics is combined with human decision-making and human-driven actuation (driving and physical infrastructure utilization) to form a control loop. The Smart City Hub provides a generic platform for a number of other services beyond traffic and public transportation, including maps and way finding, municipal communication, emergency management and others. The tools that will be developed will allow researchers and practitioners to more quickly prototype, deploy and experiment with these CPS. To ensure these benefits, the research team will make its research infrastructure freely available as an open-source project. It will also develop educational materials focused on modeling, prototyping and evaluating these applications at scale. In addition, the studies the team will perform will provide new data and new scientific understanding of large-scale human interaction with CPS, which it expects will yield long-term benefits in the design and analysis of such applications.
Off
Vanderbilt University
-
National Science Foundation
Abhishek Dubey Submitted by Abhishek Dubey on December 22nd, 2015
Smart Cities are complex cyber-physical systems with large human populations adding additional complexity. Instrumentation and modeling are components of a smart city. Regardless, however, of the ubiquity of instrumentation and precision of models, in the end, humans and human teams will make decisions about citywide operations and management, especially in crisis. We contend that the hierarchical nature of contemporary command and control systems can create virtual blind spots in which opportunities or dangers may be invisible to the hierarchy because the necessary information is obscured as it moves between levels of abstraction in the hierarchy. This project will involve teaming with crisis management experts and researchers to develop intelligent agents designed to minimize cognitive load on decision makers, exploit semantic relationships in reports and sensor data to advise of otherwise invisible occurrences, and sequence the actions of ground-level assets to refine causal relationship models to better reflect ongoing developments during crisis and/or event management. This project addresses the following technology gap(s) as it translates from research discovery toward commercial application - a) demonstration of the effectiveness of information presentation and transparency in situations where agents can support and enhance human decision-making without increasing the cognitive workload of the human; b) transfer state-of-the-art foundational research in semantic data and information integration to the complex disaster scenario; c) development of model consistency maintenance tools for automatic update of causal models of various disaster and/or emergency situations. In addition, personnel involved in this project, e.g., graduate students, will receive innovation experiences through the design, development and testing of the model developed. This project will explore transferability of the research results into tools in other application areas such as Pararescuer training, AFRL disaster response system RIPPLE, and Clark County Emergency Management Agency. This project will also have outreach efforts with mentoring high school and undergraduate students at Discovery Lab, Tec^Edge through the Summer at the Edge/Year at the Edge Programs (SATE/YATE).
Off
Wright State University
-
National Science Foundation
Michelle Cheatham
Submitted by Subhashini Ganapathy on December 22nd, 2015
Subscribe to Modeling