Applications of CPS technologies used in the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods.
The objective of this work is to generate new fundamental science that enables the operation of cyber-physical systems through complex environments. Predicting how a system will behave in the future requires more computing power if that system is complex. Navigating through environments with many obstacles could require significant computing time, which may delay the issue of decisions that have to be made by the on-board algorithms. Fortunately, systems do not always need the most accurate model to predict their behavior. This project develops new theory for deciding between the best model to use when making a decision in real time. The approach involves switching between different predictive models of the system, depending on the computational burden of the associated controller, and the accuracy that the predictive model provides. These tools will pave the way for more kinds of aircraft to navigate closely and safely with one another through the National Air Space (NAS), including Unmanned Air Systems (UAS). The results from this project will enable more accurate and faster trajectory synthesis for controllers with nonlinear plants, or nonlinear constraints that encode obstacles. The approach utilizes hybrid control to switch between models whose accuracy is normalized by their computational burden of predictive control methods. This synergistic approach enables computationally-aware cyber-physical systems (CPSs), in which model accuracy can be jointly considered with computational requirements. The project advances the knowledge on modeling, analysis, and design of CPSs that utilize predictive methods for trajectory synthesis under constraints in real-time cyber-physical systems. The results will include methods for the design of algorithms that adapt to the computational limitations of autonomous and semi-autonomous systems while satisfying stringent timing and safety requirements. With these methods come new tools to account for computational capabilities in real-time, and new hybrid feedback algorithms and prediction schemes that exploit computational capabilities to arrive at more accurate predictions within the time constraints. The algorithms will be modeled in terms of hybrid dynamical systems, to guarantee dynamical properties of interest. The problem space will draw from models of UAS in the NAS.
Off
University of Arizona
-
National Science Foundation
Jonathan Sprinkle Submitted by Jonathan Sprinkle on April 25th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Kang Shin Submitted by Kang Shin on April 25th, 2016
The objective of this work is to generate new fundamental science that enables the operation of cyber-physical systems through complex environments. Predicting how a system will behave in the future requires more computing power if that system is complex. Navigating through environments with many obstacles could require significant computing time, which may delay the issue of decisions that have to be made by the on-board algorithms. Fortunately, systems do not always need the most accurate model to predict their behavior. This project develops new theory for deciding between the best model to use when making a decision in real time. The approach involves switching between different predictive models of the system, depending on the computational burden of the associated controller, and the accuracy that the predictive model provides. These tools will pave the way for more kinds of aircraft to navigate closely and safely with one another through the National Air Space (NAS), including Unmanned Air Systems (UAS). The results from this project will enable more accurate and faster trajectory synthesis for controllers with nonlinear plants, or nonlinear constraints that encode obstacles. The approach utilizes hybrid control to switch between models whose accuracy is normalized by their computational burden of predictive control methods. This synergistic approach enables computationally-aware cyber-physical systems (CPSs), in which model accuracy can be jointly considered with computational requirements. The project advances the knowledge on modeling, analysis, and design of CPSs that utilize predictive methods for trajectory synthesis under constraints in real-time cyber-physical systems. 
 The results will include methods for the design of algorithms that adapt to the computational limitations of autonomous and semi-autonomous systems while satisfying stringent timing and safety requirements. With these methods come new tools to account for computational capabilities in real-time, and new hybrid feedback algorithms and prediction schemes that exploit computational capabilities to arrive at more accurate predictions within the time constraints. The algorithms will be modeled in terms of hybrid dynamical systems, to guarantee dynamical properties of interest. The problem space will draw from models of UAS in the NAS.
Off
University of California-Santa Cruz
-
National Science Foundation
Ricardo Sanfelice Submitted by Ricardo Sanfelice on April 12th, 2016
Strategic decision-making for physical-world infrastructures is rapidly transitioning toward a pervasively cyber-enabled paradigm, in which human stakeholders and automation leverage the cyber-infrastructure at large (including on-line data sources, cloud computing, and handheld devices). This changing paradigm is leading to tight coupling of the cyber- infrastructure with multiple physical- world infrastructures, including air transportation and electric power systems. These management-coupled cyber- and physical- infrastructures (MCCPIs) are subject to complex threats from natural and sentient adversaries, which can enact complex propagative impacts across networked physical-, cyber-, and human elements. We propose here to develop a modeling framework and tool suite for threat assessment for MCCPIs. The proposed modeling framework for MCCPIs has three aspects: 1) a tractable moment-linear modeling paradigm for the hybrid, stochastic, and multi-layer dynamics of MCCPIs; 2) models for sentient and natural adversaries, that capture their measurement and actuation capabilities in the cyber- and physical- worlds, intelligence, and trust-level; and 3) formal definitions for information security and vulnerability. The attendant tool suite will provide situational awareness of the propagative impacts of threats. Specifically, three functionalities termed Target, Feature, and Defend will be developed, which exploit topological characteristics of an MCCPI to evaluate and mitigate threat impacts. We will then pursue analyses that tie special infrastructure-network features to security/vulnerability. As a central case study, the framework and tools will be used for threat assessment and risk analysis of strategic air traffic management. Three canonical types of threats will be addressed: environmental-to-physical threats, cyber-physical co-threats, and human-in-the-loop threats. This case study will include development and deployment of software decision aids for managing man-made disturbances to the air traffic system.
Off
Washington State University
-
National Science Foundation
Adam Hahn
Hans Van Dongen
Sandip Roy Submitted by Sandip Roy on April 12th, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Carnegie Mellon University
-
National Science Foundation
Submitted by Zhen Qian on April 11th, 2016
This project aims to accelerate the deployment of security measures for cyber-physical systems (CPSs). A framework is proposed that combines anomaly identification approaches, which emphasizes on the development of decentralized cyber-attack monitoring and diagnostic-like components, with robust control countermeasure to improve reliability and maintain system functionality. Within this framework, the investigators will (1) implement hybrid observers and active attack detection methods exploiting system vulnerabilities; and (2) develop and integrate cyber-attack control countermeasure at the physical system level to guarantee functionality and resiliency in the presence of identified and unidentified threats. Specifically, this project focuses on applications to connected vehicle (CV) systems where vehicles are capable of sharing information via dedicated short range communication network, with the goal of improving fuel efficiency and avoiding collision. The project's final objective would be to create a cyber-secure vehicle connectivity paradigm that incorporates cyber-attack detection algorithms and executes integrated fault-tolerant countermeasures at the vehicle level to support vehicle system resiliency and accelerate the future commercialization of automated vehicles. The research solutions of this project will impact safety, security and reliability of networked CPSs by helping accelerate the adoption of threat identification and attack resilient control countermeasures at the system and network level. The specific application to connected and automated vehicles should lead to a future market acceptance of these vehicle technologies with a potential improvement in traffic conditions, vehicle and personal safety, and energy consumption. This project involves interdisciplinary research in cyber security for the development of more secure, scalable and reliable future networked CPSs. It proposes to conduct fundamental research on a model-based computational strategy that includes: 1) implement advanced threat models in a hybrid systems framework; 2) identify system and communication vulnerabilities especially in the dedicated short range communication network (DSRC) for CVs; 3) derive hybrid observer based cyber-attack detection algorithms based on stochastic quantized models and event triggered estimation; 4) establish active attack detection methods based on system vulnerabilities; 5) develop control counter measures for each CPS based on game theory and robust control methods; 6) derive control algorithms against malicious agents in the CV to avoid vehicle collisions; 7) develop computationally fast and distributed algorithms for the above six objectives; and 8) evaluate through simulation and experimental validation the capabilities and impact on the vehicle of the proposed strategies.
Off
Clemson University
-
National Science Foundation
James Martin
Submitted by Pierluigi Pisu on April 11th, 2016
The objective of this research is to design a semi-automated, efficient, and secure emergency response system to reduce the time it takes emergency vehicles to reach their destinations, while increasing the safety of non-emergency vehicles and emergency vehicles alike. Providing route and maneuver guidance to emergency vehicles and non-emergency vehicles will make emergency travel safer and enable police and other first responders to reach and transport those in need, in less time. This should reduce the number of crashes involving emergency vehicles and associated litigation costs while improving medical outcomes, reducing property damage, and instilling greater public confidence in emergency services. At the same time, non-emergency vehicles will also be offered increased safety and, with the reduction of long delays attributed to emergency vehicles, experience reduced incident-related travel time, which will increase productivity and quality of life for drivers. Incorporating connected vehicles into the emergency response system will also provide synergistic opportunities for non-emergency vehicles, including live updates on accident sites, areas to avoid, and information on emergency routes that can be incorporated into navigation software so drivers can avoid potential delays. While the proposed system will naturally advance the quality of transportation in smart cities, it will also provide a platform for future techniques to build upon. For example, the proposed system could be connected with emergency care facilities to balance the load of emergency patients at hospitals, and act as a catalyst toward the realization of a fully-automated emergency response system. New courses and course modules will be developed to recruit and better prepare a future workforce that is well versed in multi-disciplinary collaborations. Video demos and a testbed will be used to showcase the research to the public. The key research component will be the design of an emergency response system that (1) dynamically determines EV routes, (2) coordinates actions by non-emergency vehicles using connected vehicle technology to efficiently and effectively clear paths for emergency vehicles, (3) is able to adapt to uncertain traffic and network conditions, and (4) is difficult to abuse or compromise. The project will result in (1) algorithms that dynamically select EV routes based on uncertain or limited traffic data, (2) emergency protocols that exploit connected vehicle technology to facilitate emergency vehicles maneuvers, (3) an automation module to assist with decision making and maneuvers, and (4) an infrastructure and vehicle hardening framework that prevents cyber abuse. Experiments will be performed on a testbed and a real test track to validate the proposed research.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
Submitted by Pamela Murray-Tuite on April 6th, 2016
During the last decade, we have witnessed a rapid penetration of autonomous systems technology into aerial, road, underwater, and sea vehicles. The autonomy assumed by these vehicles holds the potential to increase performance significantly, for instance, by reducing delays and increasing capacity, while enhancing safety, in a number of transportation systems. However, to exploit the full potential of these autonomy-enabled transportation systems, we must rethink transportation networks and control algorithms that coordinate autonomous vehicles operating on such networks. This project focuses on the design and operation of autonomy-enabled transportation networks that provide provable guarantees on achieving high performance and maintaining safety at all times. The foundational problems arising in this domain involve taking into account the physics governing the vehicles in order to coordinate them using cyber means. This research effort aims to advance the science of cyber-physical systems by following a unique and radical approach, drawing inspiration and techniques from non-equilibrium statistical mechanics and self-organizing systems, and blending this inspiration with the foundational tools of queueing theory, control theory, and optimization. This approach may allow orders of magnitude improvement in the servicing capabilities of various transportation networks for moving goods or people. The applications include the automation of warehouses, factory floors, sea ports, aircraft carrier decks, transportation networks involving driverless cars, drone-enabled delivery networks, air traffic management, and military logistics networks. The project also aims to start a new wave of classes and tutorials that will create trained engineers and a research community in the area of safe and efficient transportation networks enabled by autonomous cyber-physical systems.
Off
University of Pittsburgh
-
National Science Foundation
Submitted by Zhi-Hong Mao on April 5th, 2016
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.
Off
University of Pennsylvania
-
National Science Foundation
Nadia Heninger
Andreas Haeberlen
Insup Lee Submitted by Insup Lee on April 5th, 2016
During the last decade, we have witnessed a rapid penetration of autonomous systems technology into aerial, road, underwater, and sea vehicles. The autonomy assumed by these vehicles holds the potential to increase performance significantly, for instance, by reducing delays and increasing capacity, while enhancing safety, in a number of transportation systems. However, to exploit the full potential of these autonomy-enabled transportation systems, we must rethink transportation networks and control algorithms that coordinate autonomous vehicles operating on such networks. This project focuses on the design and operation of autonomy-enabled transportation networks that provide provable guarantees on achieving high performance and maintaining safety at all times. The foundational problems arising in this domain involve taking into account the physics governing the vehicles in order to coordinate them using cyber means. This research effort aims to advance the science of cyber-physical systems by following a unique and radical approach, drawing inspiration and techniques from non-equilibrium statistical mechanics and self-organizing systems, and blending this inspiration with the foundational tools of queueing theory, control theory, and optimization. This approach may allow orders of magnitude improvement in the servicing capabilities of various transportation networks for moving goods or people. The applications include the automation of warehouses, factory floors, sea ports, aircraft carrier decks, transportation networks involving driverless cars, drone-enabled delivery networks, air traffic management, and military logistics networks. The project also aims to start a new wave of classes and tutorials that will create trained engineers and a research community in the area of safe and efficient transportation networks enabled by autonomous cyber-physical systems.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Submitted by Sertac Karaman on April 5th, 2016
Subscribe to Transportation