Applications of CPS technologies dealing with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition.
The objective of this research is to understand mechanisms for generating natural movements of skeletal mechanisms driven by stochastically-controlled, biologically-inspired actuators. The approach is to verify the hypothesis that the variability associated with high redundancy and the stochastic nature of the actuation is key to generating natural movements. This project seeks to: (i) develop a method to model and characterize actuator array topologies; (ii) develop a method to analyze the force variability of stochastic actuator arrays; (iii) develop an analytical method to generate movements for a robot with multiple degrees of freedom by minimizing the effect of variability; and (iv) demonstrate the validity of the approach through the development of a robotic arm driven by multiple stochastic array actuators. With respect to intellectual merit, the study of inhomogeneous stochastic actuator network topologies inspired by neuromuscular systems could find the "missing links" that bridge the gap between biological natural movements and the ones in artificial systems. Potential results could impact other research areas, including robust computer networks, robust immune systems, and redundant muscle coordination. With respect to broader impacts, a new graduate-level course provides students in engineering and science with a comprehensive and multidisciplinary education in the underlying principles, cutting-edge applications, and societal impacts of biologically-inspired robotics. Outreach activities include an interactive educational program for K-12 students and a workshop for high-school students and their mentors on robot development. International collaboration with Tokyo University of Science, Japan, will be initiated.
Off
GA Tech Research Corporation - GA Institute of Technology
-
National Science Foundation
Ueda, Jun
Jun Ueda Submitted by Jun Ueda on April 7th, 2011
The objective of this research is to investigate and implement a software architecture to improve productivity in the development of rapidly deployable, robust, real-time situational awareness and response applications. The approach is based on a modular cross-layered architecture that combines a data-centric descriptive programming model with an overlay-based communication model. The cross-layer architecture will promote an efficient implementation. Simultaneously, the data-centric programming model and overlay-based communication model will promote a robust implementation that can take advantage of heterogeneous resources and respond to different failures. There is currently no high-level software architecture that meets the stringent requirements of many situational awareness and response applications. The proposed project will fill this void by developing a novel data-centric programming model that spans devices with varying computational and communication capabilities. Similarly, the overlay communication model will extend existing work by integrating network resources with the programming model. This cross-layer design will promote the implementation of efficient and robust applications. This research will benefit society by providing emergency responders with software tools that present key information in a timely fashion. This, in turn, will increase safety and reduce economic and human loss during emergencies. The productivity gains in deploying sensors and mobile devices will benefit other domains, such as field research using sensor networks. Software will be released under an open-source license to promote the use by government agencies, research institutions, and individuals. Products of this research, including the software, will be used in courses at the University of North Carolina.
Off
University of North Carolina at Chapel Hill
-
National Science Foundation
Fowler, Robert
Robert Fowler Submitted by Robert Fowler on April 7th, 2011
The objective of this research is to address fundamental challenges in the verification and analysis of reconfigurable distributed hybrid control systems. These occur frequently whenever control decisions for a continuous plant depend on the actions and state of other participants. They are not supported by verification technology today. The approach advocated here is to develop strictly compositional proof-based verification techniques to close this analytic gap in cyber-physical system design and to overcome scalability issues. This project develops techniques using symbolic invariants for differential equations to address the analytic gap between nonlinear applications and present verification techniques for linear dynamics. This project aims at transformative research changing the scope of systems that can be analyzed. The proposed research develops a compositional proof-based approach to hybrid systems verification in contrast to the dominant automata-based verification approaches. It represents a major improvement addressing the challenges of composition, reconfiguration, and nonlinearity in system models The proposed research has significant applications in the verification of safety-critical properties in next generation cyber-physical systems. This includes distributed car control, robotic swarms, and unmanned aerial vehicle cooperation schemes to full collision avoidance protocols for multiple aircraft. Analysis tools for distributed hybrid systems have a broad range of applications of varying degrees of safety-criticality, validation cost, and operative risk. Analytic techniques that find bugs or ensure correct functioning can save lives and money, and therefore are likely to have substantial economic and societal impact.
Off
Carnegie-Mellon University
-
National Science Foundation
Platzer, Andre
Andre Platzer Submitted by Andre Platzer on April 7th, 2011
The objective of this research is to discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile micro-robots that self-organize into cooperative configurations. The approach is intrinsically interdisciplinary and organized along four main thrusts: (1) Algorithms for distributed coordination and control under severe power, communication, and mobility constraints. (2) Electronics for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits. (3) Locomotion devices and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions. (4) Integration of the algorithms, electronics, and actuators into a fleet of ant-size micro-robots. No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications. The PIs will adopt a co-design philosophy that promotes cross-disciplinary research and tight collaboration. Networks of ant-sized robots are expected to be useful in disaster relief, manufacturing, warehouse management, and ecological monitoring, as well as in new unforeseen applications. In addition, the new methods and principles proposed here can be transitioned to other highly-distributed and resource-constrained engineering problems, such as air-traffic control systems. This research program will train Ph.D. students with unique skills in the design of hybrid distributed networks and it will involve undergraduate students, particularly underrepresented minorities and women.
Off
University of Maryland College Park
-
National Science Foundation
Elisabeth Smela
Pamela Abshire
Martins, Nuno Miguel
Nuno Martins Submitted by Nuno Martins on April 7th, 2011
The objective of this research is to create interfaces that enable people with impaired sensory-motor function to control interactive cyber-physical systems such as artificial limbs, wheelchairs, automobiles, and aircraft. The approach is based on the premise that performance can be significantly enhanced merely by warping the perceptual feedback provided to the human user. A systematic way to design this feedback will be developed by addressing a number of underlying mathematical and computational challenges. The intellectual merit lies in the way that perceptual feedback is constructed. Local performance criteria like stability and collision avoidance are encoded by potential functions, and gradients of these functions are used to warp the display. Global performance criteria like optimal navigation are encoded by conditional probabilities on a language of motion primitives, and metric embeddings of these probabilities are used to warp the display. Together, these two types of feedback facilitate improved safety and performance while still allowing the user to retain full control over the system. If successful, this research could improve the lives of people suffering from debilitating physical conditions such as amputation or stroke and also could protect people like drivers or pilots that are impaired by transient conditions such as fatigue, boredom, or substance abuse. Undergraduate and graduate engineering students will benefit through involvement in research projects, and K-12 students and teachers will benefit through participation in exhibits presented at the Engineering Open House, an event hosted annually by the College of Engineering at the University of Illinois.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Seth Hutchinson
Bretl, Timothy
Timothy Bretl Submitted by Timothy Bretl on April 7th, 2011
The objective of this research is to develop new principles for creating and comparing models of skilled human activities, and to apply those models to systems for teaching, training and assistance of humans performing these activities. The models investigated will include both hybrid systems and language-based models. The research will focus on modeling surgical manipulations during robotic minimally invasive surgery. Models for expert performance of surgical tasks will be derived from recorded motion and video data. Student data will be compared with these expert models, and both physical guidance and information display methods will be developed to provide feedback to the student based on the expert model. The intellectual merit of this work lies in the development of a new set of mathematical tools for modeling human skilled activity. These tools will provide new insights into the relationship between skill, style, and content in human motion. Additional intellectual merit lies in the connection of hybrid systems modeling to language models, the creation of techniques for automated training, and in the assessment of new training methods. The broader impact of this research will be the creation of automated methods for modeling and teaching skilled human motion. These methods will have enormous implications for the training and re-training of the US workforce. This project will also impact many diversity and outreach activities, including REU programs and summer camps for K-12 outreach. The senior personnel of this project also participate in the Robotic Systems Challenge and the Women in Science and Engineering program.
Off
Johns Hopkins University
-
National Science Foundation
Hager, Gregory
Gregory Hager Submitted by Gregory Hager on April 7th, 2011
The objective of this research is to develop principles and tools for the design of control systems using highly distributed, but slow, computational elements. The approach of this research is to build an architecture that uses highly parallelized, simple computational elements incorporating nonlinearities, time delay and asynchronous computation as integral design elements. Tools for the design of non-deterministic protocols will be developed and demonstrated using an existing multi-vehicle testbed at Caltech. The motivation for using "slow computing" is to develop new feedback control architectures for applications where computational power is extremely limited. Examples of such systems are those where the energy usage of the system must remain small, either due to the source of power available (e.g. batteries or solar cells) or the physical size of the device (e.g. microscale and nanoscale robots). A longer term application area is in the design of control systems using novel computing substrates, such as biological circuits. A critical element in both cases is the tight coupling between the dynamics of the underlying process and the temporal properties of the algorithm that is controlling it. The implementation plan for this project involves students from multiple disciplines (including bioengineering, computer science, electrical engineering and mechanical engineering) as well as at multiple experience levels (sophomores through PhD students) working together on a set of interlinked research problems. The project is centered in the Control and Dynamical Systems department at Caltech, which has a strong record of recruiting women and underrepresented minority students into its programs.
Off
California Institute of Technology
-
National Science Foundation
Murray, Richard
Richard Murray Submitted by Richard Murray on April 7th, 2011
The objective of this research is to create computational foundation, methods, and tools for efficient and autonomous optical micromanipulation using microsphere ensembles as grippers. The envisioned system will utilize a holographic optical tweezer, which uses multiple focused optical traps to position microspheres in three-dimensional space. The proposed approach will focus on the following areas. First, it will provide an experimentally validated optical-tweezers based workstation for concurrent manipulation of multiple cells. Second, it will provide algorithms for on-line monitoring of workspace to support autonomous manipulation. Finally, it will provide real-time image-guided motion planning strategies for transporting microspheres ensembles. The proposed work will lead to a new way of autonomously manipulating difficult-to-trap or sensitive objects using microspheres ensembles as reconfigurable grippers. The proposed work will also lead to fundamental advances in several cyber physical systems areas by providing new approaches to micromanipulations, fast and accurate algorithms with known uncertainty bounds for on-line monitoring of moving microscale objects, and real-time motion planning algorithms to transport particle ensembles. The ability to quickly and accurately manipulate individual cells with minimal training will enable researchers to conduct basic research at the cellular scale. Control over cell-cell interactions will enable unprecedented insights into cell signaling pathways and open up new avenues for medical diagnosis and treatment. The proposed integration of research with education will train students with a strong background in emerging robotics technologies and the inner workings of cells. These students will be in a unique position to rapidly develop and deploy specialized robotics technologies.
Off
University of Maryland College Park
-
National Science Foundation
Wolfgang Losert
Gupta, Satyandra
Satyandra Gupta Submitted by Satyandra Gupta on April 7th, 2011
The objective of this research is to enable operation of synthetic and cyborg insects in complicated environments, such as outdoors or in a collapsed building. As the mobile platforms and environment have significant uncertainty, learning and adaptation capabilities are critical. The approach consists of three main thrusts to enable the desired learning and adaptation: (i) Development of algorithms to efficiently learn optimal control policies and dynamics models through sharing the learning and adaptation between various instantiations of platforms and environments. (ii) Creation of control learning algorithms which can be run on low-cost, low-power mobile platforms. (iii) Development of algorithms for online improvement of policy performance in a minimal number of real-world trials. The proposed research will advance learning and adaptation capabilities of practical cyberphysical systems. The proposed approach will be generally applicable and lead to a new class of learning and adapting systems that are able to leverage shared properties between multiple tasks to significantly speed up learning and adaptation. Success in this research project will bring society closer to solving the grand challenge of teams of mobile, disposable, search and rescue robots which can robustly locomote through uncertain and novel environments, finding survivors in disaster situations, while removing risk from rescuers. This project will provide interdisciplinary training through research and classwork for undergraduate and graduate students in creating systems which intimately couple the cyber and physical aspects in robotic and living mobile platforms. Through the SUPERB summer program, under-represented students in engineering will experience research in learning and robotics.
Off
University of California-Berkeley
-
National Science Foundation
Ronald Fearing
Michel Maharbiz
Abbeel, Pieter
Pieter Abbeel Submitted by Pieter Abbeel on April 7th, 2011
This proposed CPS project aims to enable intelligent telesurgery in which a surgeon, or a distributed team of surgeons, can work on tiny regions in the body with minimal access. The University of Washington will expand an existing open surgical robot testbed, and create a robust infrastructure for cyber-physical systems with which to extend traditional real-time control and teleoperation concepts by adding three new interfaces to the system: networking, intelligent robotics, and novel non-linear controllers. Intellectual Merit: This project aims to break new ground beyond teleoperation by adding advanced robotic functions. Equally robust and flexible networking, high-level interfaces, and novel controllers will be added to the existing sytsem. The resulting system will be an open architecture and a substrate upon which many cyber-physical system ideas and algorithms will be tested under realistic conditions. The platforms proven physical robustness will permit rigorous evaluation of results and the open interfaces will encourage collaboration and sharing of results. Broader Impacts: We expect the results to enable new research in multiple ways. First, the collaborators such as Johns Hopkins, U.C. Santa Cruz, and several foreign institutions will be able to remotely connect to new high level interfaces provided by this project. Second, for the first time a robust and completely open surgical telerobot will be available for research so that CPS researchers do not need to be limited to isolated toy problems but instead be able to prototype advanced surgical robotics techniques and evaluate them in realistic contexts including animal procedures.
Off
University of Washington
-
National Science Foundation
Hannaford, Blake
Blake Hannaford Submitted by Blake Hannaford on April 7th, 2011
Subscribe to Robotics