Modernized electrical grid automated to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile. The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation. The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
Carnegie Mellon University
-
National Science Foundation
Submitted by Anthony Rowe on December 21st, 2015
The objective of this project is to research tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations. Second, a framework will be created for developing software components that use probabilistic execution to model and manage the risk of software failure. These techniques will make software more robust, lower the cost of validating code changes, and allow software quality to be integrated smoothly into overall system-level analysis. Third, techniques from Extreme Value Theory will be applied to develop adaptive verification and validation procedures. This will enable early introduction of new and advanced aviation systems. These systems will initially have restricted capabilities, but these restrictions will be gradually relaxed as justified by continual logging of data from in-service products. The three main research aims will lead to a significant reduction in the costs and time required for fielding new aviation systems. This will enable, for example, the safe and rapid implementation of next generation air traffic control systems that have the potential of tripling airspace capacity with no reduction in safety. The proposed methods are also applicable to other complex systems including smart power grids and automated highways. Integrated into the research is an education plan for developing a highly skilled workforce capable of designing safety critical systems. This plan centers around two main activities: (a) creation of undergraduate labs focusing on safety-critical systems, and (b) integration of safety-critical concepts into a national robotic snowplow competition. These activities will provide inspirational, real-world applications to motivate student learning.
Off
University of Minnesota-Twin Cities
-
National Science Foundation
Submitted by Peter Seiler on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Pennsylvania
-
National Science Foundation
Submitted by Ufuk Topcu on December 18th, 2015
This project addresses the impact of the integration of renewable intermittent generation in a power grid. This includes the consideration of sophisticated sensing, communication, and actuation capabilities on the system's reliability, price volatility, and economic and environmental efficiency. Without careful crafting of its architecture, the future smart grid may suffer from a decrease in reliability. Volatility of prices may increase, and the source of high prices may be more difficult to identify because of undetectable strategic policies. This project addresses these challenges by relying on the following components: (a) the development of tractable cross-layer models; physical, cyber, and economic, that capture the fundamental tradeoffs between reliability, price volatility, and economic and environmental efficiency, (b) the development of computational tools for quantifying the value of information on decision making at various levels, (c) the development of tools for performing distributed robust control design at the distribution level in the presence of information constraints, (d) the development of dynamic economic models that can address the real-time impact of consumer's feedback on future electricity markets, and finally (e) the development of cross-layer design principles and metrics that address critical architectural issues of the future grid. This project promotes modernization of the grid by reducing the system-level barriers for integration of new technologies, including the integration of new renewable energy resources. Understanding fundamental limits of performance is indispensable to policymakers that are currently engaged in revamping the infrastructure of our energy system. It is critical that we ensure that the transition to a smarter electricity infrastructure does not jeopardize the reliability of our electricity supply twenty years down the road. The educational efforts and outreach activities will provide multidisciplinary training for students in engineering, economics, and mathematics, and will raise awareness about the exciting research challenges required to create a sustainable energy future.
Off
University of Florida
-
National Science Foundation
Sean Meyn Submitted by Sean Meyn on December 18th, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
University of Florida
-
National Science Foundation
Submitted by John Harris on December 18th, 2015
1239257 (Wu). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ 1239247 (Wen). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ 1239093 (Lewis). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations.
Off
Drexel University
-
National Science Foundation
Submitted by Jin Wen on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
Submitted by Vijay Gupta on December 18th, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
Cornell University
-
National Science Foundation
Eilyan Bitar Submitted by Eilyan Bitar on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BM?s realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control. BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
University of Illinois at Chicago
-
National Science Foundation
Sudip Mazumder Submitted by Sudip Mazumder on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BMs realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control. BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Panganamala Kumar Submitted by Panganamala Kumar on December 18th, 2015
Subscribe to Smart Grid