Independent procedures that are used together for checking that a product, service, or system meets requirements and specifications and that it fulfills its intended purpose.

Cybersecurity Funding Opportunity

The US National Science Foundation's Federal Cyber Service (SFS) program has expanded funding for cybersecurity-related projects this year from $15M to $45M.  We are actively seeking good proposals which address curriculum, faculty development and/or applied research in cybersecurity, information assurance, digital forensics and computer security.

The proposal submission deadline is April 17, 2012. For more information read about the Capacity Building Track at http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5228 or contact Sue Fitzgerald (scfitzge@nsf.gov) or Guy-Alain Amoussou (gamousso@nsf.gov).

Capacity Building Track: This track is open to all institutions of higher education.  The intent is to increase the production of high quality information assurance and cybersecurity professionals by providing support for efforts within the higher education system, as well as outreach to K-12 students with related interests. These efforts may take many forms, but must be designed to address one or more of the following:

  -  increase national capacity for the high-quality education of information technology professionals in cybersecurity-related disciplines,
  -  increase the number of IT professionals in cybersecurity-related disciplines,
  -  increase interest in information assurance and/or cybersecurity careers,
  -  accelerate the integration of information assurance, computer security, or cybersecurity knowledge in curricula across the STEM disciplines,
  -  promote the integration of research and education in information assurance, computer security, or cybersecurity,
  -  strengthen partnerships between institutions of higher education, government, and relevant employment sectors leading to improved educational opportunities in cybersecurity-related studies, or
  - increase the diversity of the cybersecurity workforce.

Capacity building projects may vary in size. A typical small scale project will request a total of $200,000 to $300,000 over a two to three year period. Large scale projects may not exceed a total of $900,000 and typically will extend over three to four years.

Projects which address the following topics are of particular interest in this competition:

  - development, deployment, and evaluation of information assurance, cybersecurity, and/or digital forensics curriculum guidelines leading to wide adoption nationally,
  - integration of information assurance and/or cybersecurity topics into computer science, information technology, engineering and other existing degree programs with plans for pervasive adoption,
  - development and extensive adoption of coordinated plans for pathways between two-year, four-year and/or graduate programs or development of accelerated ("fast track") programs which combine the bachelor's and master's degree in information assurance, cybersecurity, or digital forensics,
  - development of accelerated information assurance or cybersecurity degree or certificate programs for veterans, career changers, and non-traditional students,
  -  models for the integration of applied research experiences into information assurance, cybersecurity, or digital forensic degree programs,
  -  development of faculty expertise in information assurance, cybersecurity, or digital forensics with an emphasis on having a broad impact on faculty who lack training in these arenas,
  -  evaluation of the effectiveness of cybersecurity competitions, games, and other outreach and retention activities, or
  -  other innovative and creative projects which lead to an increase in the ability of the United States higher education enterprise to produce information assurance and cybersecurity professionals.

Although projects may vary considerably in the approaches they take, the number of academic institutions involved, the number of faculty and students that participate, and in their stage of development, all promising projects share certain characteristics.

Quality, Relevance, and Impact: Projects should address a recognized need or opportunity, clearly indicate how they will meet this need, and be innovative in their production and use of new materials, processes, and ideas, or in their implementation of tested ones.

General Announcement
Not in Slideshow
Mario Berges Submitted by Mario Berges on February 20th, 2012
The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems. During the autocoding process, the properties of control system specifications are transformed into proven assertions explicitly written in the resulting source code. Thus CrAVES aims at transforming the extensive safety and reliability analyses conducted by control system engineers, such as those based on Lyapunov theory, into rigorous, embedded analyses of the corresponding software implementations. CrAVES comes as a useful complement to current static software analysis methods, which it leverages to develop independent verification systems. Computers and computer programs used to manage documents and spreadsheets. They now also interact with physical artifacts (airplanes, power plants, automobile brakes and robotic surgeons), to create Cyber-Physical Systems. Software means complexity and bugs - bugs which can cause real tragedy, far beyond the frozen screens we associate with system crashes on our current PCs. Software autocoding is becoming the de facto recommended practice for many safety-critical applications. CrAVES aims to evolve this towards higher standards of quality and reduced design times and costs. Rigorous, mathematical arguments supporting safety-critical functionalities are the cornerstone of CrAVES. Collaborative programs involving high-school teachers will encourage the transmission of this message to STEM education in high-schools through university programs designed for that purpose.
Off
National Science Foundation
-
Georgia Tech Research Corporation
Feron, Eric
Eric Feron Submitted by Eric Feron on December 6th, 2011
The electric grid in the United States has evolved over the past century from a series of small independent community-based systems to one of the largest and most complex cyber-physical systems today. However, the established conditions that made the electric grid an engineering marvel are being challenged by major changes, the most important being a worldwide effort to mitigate climate change by reducing carbon emissions. This research investigates key aspects of a computation and information foundation for future cyber-physical energy systems?the smart grids. The overall project objective is to support high penetrations of renewable energy sources, community based micro-grids, and the widespread use of electric cars and smart appliances. The research has three interconnected components that, collectively, address issues of computation architecture, information hierarchy, and experimental modeling and validation. On computation architecture, the framework based on cloud computing is investigated for the scalable, consistent, and secure operations of smart grids. The research aims to quantify fundamental design tradeoffs among scalability, data consistency, security, and trustworthiness for emerging applications of smart grids. On information hierarchy, temporal and spatial characteristics of information hierarchy are investigated with the goal of gaining a foundational understanding on how information should be partitioned, collected, distributed, compressed, and aggregated. The research also develops an open and scalable experimental platform (SmartGridLab) for empirical investigations and testing of algorithms and concepts developed in this project. SmartGridLab integrates the hardware testbed with a software simulator so that software virtual nodes can interact with physical nodes in the testbed. This research also includes a significant education component aimed at integrating frontier research with undergraduate and graduate curricula.
Off
Georgia State University Research Foundation, Inc.
-
National Science Foundation
Song, WenZhan
WenZhan Song Submitted by WenZhan Song on December 6th, 2011
In many important situations, analytically predicting the behavior of physical systems is not possible. For example, the three dimensional nature of physical systems makes it provably impossible to express closed-form analytical solutions for even the simplest systems. This has made experimentation the primary modality for designing new cyber-physical systems (CPS). Since physical prototyping and experiments are typically costly and hard to conduct, "virtual experiments" in the form of modeling and simulation can dramatically accelerate innovation in CPS. Unfortunately, major technical challenges often impede the effectiveness of modeling and simulation. This project develops foundations and tools for overcoming these challenges. The project focuses on robotics as an important, archetypical class of CPS, and consists of four key tasks: 1) Compiling and analyzing a benchmark suite for modeling and simulating robots, 2) Developing a meta-theory for relating cyber-physical models, as well as tools and a test bed for robot modeling and simulation, 3) Validating the research results of the project using two state-of-the-art robot platforms that incorporate novel control technologies and will require novel programming techniques to fully realize their potential 4) Developing course materials incorporating the project's research results and test bed. With the aim of accelerating innovation in a wide range of domains including stroke rehabilitation and prosthetic limbs, the project is developing new control concepts and modeling and simulation technologies for robotics. In addition to new mathematical foundations, models, and validation methods, the project will also develop software tools and systematic methods for using them. The project trains four doctoral students; develops a new course on modeling and simulation for cyber-physical systems that balances both control and programming concepts; and includes an outreach component to the public and to minority-serving K-12 programs.
Off
William Marsh Rice University
-
National Science Foundation
Robert Cartwright
Marcia O'Malley
Taha, Walid
Walid Taha Submitted by Walid Taha on December 6th, 2011
The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems. During the autocoding process, the properties of control system specifications are transformed into proven assertions explicitly written in the resulting source code. Thus CrAVES aims at transforming the extensive safety and reliability analyses conducted by control system engineers, such as those based on Lyapunov theory, into rigorous, embedded analyses of the corresponding software implementations. CrAVES comes as a useful complement to current static software analysis methods, which it leverages to develop independent verification systems. Computers and computer programs used to manage documents and spreadsheets. They now also interact with physical artifacts (airplanes, power plants, automobile brakes and robotic surgeons), to create Cyber-Physical Systems. Software means complexity and bugs - bugs which can cause real tragedy, far beyond the frozen screens we associate with system crashes on our current PCs. Software autocoding is becoming the de facto recommended practice for many safety-critical applications. CrAVES aims to evolve this towards higher standards of quality and reduced design times and costs. Rigorous, mathematical arguments supporting safety-critical functionalities are the cornerstone of CrAVES. Collaborative programs involving high-school teachers will encourage the transmission of this message to STEM education in high-schools through university programs designed for that purpose.
Off
Carnegie Mellon University
-
National Science Foundation
Venet, Arnaud
Submitted by Temesghen Kahsai Azene on December 6th, 2011
The focus of this project is the efficient implementation of multiple control and non-control automotive applications in a distributed embedded system (DES) with a goal of developing safe, dependable, and secure Automotive CPS. DES are highly attractive due to the fact that they radically enhance the capabilities of the underlying system by linking a range of devices and sensors and allowing information to be processed in unprecedented ways. Deploying control and non-control applications on a modern DES, which uses advanced processor and communication technology, introduces a host of challenges in their analysis and synthesis, and leads to a large semantic gap between models and their implementation. This gap will be filled via the development of a novel CPS architecture by stitching together common fundamental principles of multimodality from real-time systems and related notions of switching in control theory and integrating them into a co-design of real-time platforms and adaptive controllers. This architecture will be validated at the Toyota Technical Center in the context of engine control and diagnostics. The results of this project will provide the science and technology for a foundation in any and all infrastructure systems ranging from finance and energy to telecommunication and transportation where distributed embedded systems are present. In addition to training the graduate and undergraduate students, and mentoring a post-doctoral associate who will gain multi-domain expertise in advanced control, real-time computation and communication, and performance analysis, an inter-school graduate and an integrated summer course will be developed on control in embedded systems and combined with on-going outreach programs at MIT and UPenn for minority and women undergraduate students and K-12 students.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Annaswamy, Anuradha
Submitted by Anuradha Annaswamy on December 6th, 2011
The objective of this research is to develop a cyber-physical system composed of accelerometers and novel machine learning algorithms to analyze data in the context of a set of driving health care applications. The approach is to develop novel machine learning algorithms for temporal segmentation, classification, and detection of subtle elements of human motion. These techniques will allow quantification of human motion and improved full-time monitoring and assessment of medical conditions using a lightweight wearable system. The scientific contribution of this research is in advancing machine learning and human sensing in support of improved medical diagnoses and treatment monitoring by (i) modeling human activity and symptoms through sensor data analysis, (ii) integrating and fusing information from several accelerometers to monitor in real-time, (iii) validating the efficacy of the automated detection through assessments applying the state of the art in diagnostic evaluation, (iv) developing novel machine learning methods for temporal segmentation, classification, and discovery of multiple temporal patterns that discriminate between temporal signals, and (v) providing quality measures to characterize subtle human motion. These algorithms will advance machine learning in the area of unsupervised and semisupervised learning. The driving applications for this research are job coaching for people with cognitive disabilities, tele-rehabilitation for knee osteo-arthritis, assessing variability in balance and gait as an indicator of health of older adults, and measures for assessing Parkinson's patients. This research is highly interdisciplinary and will train graduate students for careers in developing technological innovations in health and monitoring systems.
Off
University of Pittsburgh
-
National Science Foundation
Redfern, Mark
Mark Redfern Submitted by Mark Redfern on November 7th, 2011
The objective of this research is to develop a trustworthy and high-performance neural-machine interface (NMI) that accurately determines a user?s locomotion mode in real-time for neural-controlled artificial legs. The proposed approach is to design the NMI by integrating a new pattern recognition strategy with a high-performance computing embedded system. This project tackles the challenges of accurate interpretation of information from the neuromuscular system, a physical system, using appropriate computation in a cyber system to process the information in real-time. The neural-machine interface consists of multiple sensors that reliably monitor the neural and mechanical information and a set of new algorithms that can fuse and coordinate the highly dynamic information for accurate identification of user intent. The algorithm is to be implemented on a high-performance graphic processing unit (GPU) to meet real-time requirements. This project has the potential to enable the design of neural-controlled artificial legs and may initiate a new direction for research in and the design of prosthetic leg systems. Innovations in this domain have the potential to improve the quality of life of leg amputees, including soldiers with limb amputations. The proposed approaches seek to permit cyber systems to cope with physical uncertainty and dynamics, a common challenge in cyber-physical systems, and to pave a way for applying high-performance computing in biomedical engineering. Besides providing comprehensive training to undergraduate and graduate students, the investigators plan to introduce community college students to cyber-physical systems concepts in an interactive and engaging manner.
Off
Washington University
-
National Science Foundation
Qing Yang
Yan Sun
Huang, He (Helen)
He (Helen) Huang Submitted by He (Helen) Huang on November 4th, 2011
The objective of this research is to develop a cyber-physical system composed of accelerometers and novel machine learning algorithms to analyze data in the context of a set of driving health care applications. The approach is to develop novel machine learning algorithms for temporal segmentation, classification, and detection of subtle elements of human motion. These techniques will allow quantification of human motion and improved full-time monitoring and assessment of medical conditions using a lightweight wearable system. The scientific contribution of this research is in advancing machine learning and human sensing in support of improved medical diagnoses and treatment monitoring by (i) modeling human activity and symptoms through sensor data analysis, (ii) integrating and fusing information from several accelerometers to monitor in real-time, (iii) validating the efficacy of the automated detection through assessments applying the state of the art in diagnostic evaluation, (iv) developing novel machine learning methods for temporal segmentation, classification, and discovery of multiple temporal patterns that discriminate between temporal signals, and (v) providing quality measures to characterize subtle human motion. These algorithms will advance machine learning in the area of unsupervised and semisupervised learning. The driving applications for this research are job coaching for people with cognitive disabilities, tele-rehabilitation for knee osteo-arthritis, assessing variability in balance and gait as an indicator of health of older adults, and measures for assessing Parkinson's patients. This research is highly interdisciplinary and will train graduate students for careers in developing technological innovations in health and monitoring systems.
Off
Carnegie Mellon University
-
National Science Foundation
Hodgins, Jessica
Jessica Hodgins Submitted by Jessica Hodgins on November 3rd, 2011
The objective of this research is to develop new models of computation for multi-robot systems. Algorithm execution proceeds in a cycle of communication, computation, and motion. Computation is inextricably linked to the physical configuration of the system. Current models cannot describe multi-robot systems at a level of abstraction that is both manageable and accurate. This project will combine ideas from distributed algorithms, computational geometry, and control theory to design new models for multi-robot systems that incorporate physical properties of the systems. The approach is to focus on the high-level problem of exploring an unknown environment while performing designated tasks, and the sub-problem of maintaining network connectivity. Key issues to be studied will include algorithmic techniques for handling ongoing discrete failures, and ways of understanding system capabilities as related to failure rates, geometric assumptions and physical parameters such as robot mobility and communication bandwidth. New metrics will be developed for error rates and robot mobility. Intellectual merit arises from the combination of techniques from distributed algorithms, computational geometry, and control theory to develop and analyze algorithms for multi-robot systems. The project will develop a new class of algorithms and techniques for their rigorous analysis, not only under ideal conditions, but under a variety of error assumptions. The project will test theoretical ideas empirically, on three different multi-robot systems. Broader impacts will include new algorithms for robot coordination, and rigorous understanding of the capabilities of different hardware platforms. Robots are an excellent outreach tool, and provide concrete examples of theory in action.
Off
William Marsh Rice University
-
National Science Foundation
McLurkin, James
James McLurkin Submitted by James McLurkin on November 3rd, 2011
Subscribe to Validation and Verification