The terms denote technology areas that are part of the CPS technology suite or that are impacted by CPS requirements.
Cells, to carry out many important functions, employ an elaborate transport network with bio-molecular components forming roadways as well as vehicles. The transport is achieved with remarkable robustness under a very uncertain environment. The main goal of this proposal is to understand how biology achieves such functionality and leveraging the knowledge toward realizing effective engineered transport mechanisms for micron sized cargo. The realization of a robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. A key challenge here is to probe the mechanisms often at the nanometer scale as the bio-molecular components are at tens of nanometer scale. The main tools for addressing these challenges come from an engineering perspective that is guided by existing insights from biology.
The proposal will bring together researchers from engineering and biology and it provides an integrated environment for students. Moreover, it is known that an impaired transport mechanism can underlie many neurodegenerative maladies, and as the research here pertains to studying intracellular transport, discoveries hold the potential for shedding light on what causes the impaired transport.
Robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. Daunting challenges from the underlying highly uncertain and complex environments impede enabling robust and efficient transport systems at micro-scale. Motivated by transport in biological cells, this work proposes a robust and efficient engineered infrastructure for transporting micron/molecular scale cargo using biological constructs. For probing and manipulating the transport network, the proposal envisions strategies for coarse and fine resolution objectives at the global and local scales respectively. At the fine scale of monitoring and control, scarce and expensive physical resources such as high resolution sensors have to be shared for interrogation/control of multiple carriers. In this proposal, the principles for joint control, sensor allocation and scheduling of resources to achieve enhanced performance objectives of a high resolution probing tool, will be developed. A modern control perspective forms an essential strategy for managing multiple objectives. At the global scale, entire traffic will be monitored to arrive at real-time and off-line inferences on traffic modalities. Associated principles for dynamically identifying and tracking clusters of carriers and their importance will be built. This categorization of physical elements and their importance will determine the dynamic allocation of computational resources. Associated study of trade-offs will guide a combined strategy for allocation of computational resources and gathering of information on physical elements. Methods based on the reconstruction of graph topologies for reaching inferences that are suited to dynamically related time trajectories for the transportation infrastructure will be developed. The research proposed is transformative as it will enable a new transport paradigm at the cellular scale, which will also provide unique insights into intracellular transport where it will be possible to investigate multiple factors under the same experimental conditions.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events.
Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Carnegie Mellon University
-
National Science Foundation
Power systems have seen many changes over the last decade including the increased penetration of renewable generation, electric vehicles and new technologies for sensing, communication and control of a Smart Grid. The most significant impact of these changes are being felt at the consumer level. The ability for consumers and end devices to buy and sell energy and related services in a dynamic and interactive manner is expected to create a transactive energy market as highlighted in the Dec 2014 report of GridWise Alliance. Modeling and preparing the physical system to respond to the somewhat unpredictable behavior of active consumers over a cyber-infrastructure will be critical for maintaining grid reliability. Understanding the impact of such active consumers on the operational and business policies of the distribution utility requires advances in core system science that spans the areas of power engineering, economics, statistical signal processing, game theory, distributed control, multi-agent systems and cyber security. In conjunction with industrial partners, Westar Energy (the largest electric company in Kansas) and Kansas City Power and Light, the PIs plan to develop an architecture that requires little change to the existing investment in power distribution systems while allowing for the dynamic, adaptive control required to integrate active consumers with current and future combinations of high-variability distributed power sources, such as Photo-voltaic (PV) generators and storage batteries.
In contrast to prior related efforts that primarily focus on demand response and distributed generation management with a single home/user centric approach, the proposed approach takes a holistic system perspective that includes cumulative modeling of multiple stochastic active consumers and the cyber infrastructure over which they may interact. Specific research thrusts include: (1) a general, extensible, and secure cyber architecture based on holonic multi-agent principles that provides a pathway to the emerging area of transactive energy market in power distribution systems, but also provides foundation for other engineered systems with active consumers; (2) new analytical insights into generalized stochastic modeling of consumer response to real]time price of electricity and the impact of such active consumers on grid reliability and security, and (3) novel methodology for comprehensive distributed control and management of power distribution systems with active consumers and high penetration of distributed renewable resources. Active consumers are an integral part of the Smart City vision where cyber systems are integrated into the transportation, energy, healthcare and biomedical, and critical infrastructure systems. Successful completion of this project will result in modeling, control, analysis and simulation architectures for all such active consumer driven CPS domains. The resulting gains in operating efficiency, economics, reliability and security will result in overall welfare for the society.
Off
Kansas State University
-
National Science Foundation
Submitted by Anil Pahwa on April 11th, 2016
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce.
Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Off
WPI
-
National Science Foundation
Cagdas Onal
Submitted by Taskin Padir on April 6th, 2016
The objective of this research is to design a semi-automated, efficient, and secure emergency response system to reduce the time it takes emergency vehicles to reach their destinations, while increasing the safety of non-emergency vehicles and emergency vehicles alike. Providing route and maneuver guidance to emergency vehicles and non-emergency vehicles will make emergency travel safer and enable police and other first responders to reach and transport those in need, in less time. This should reduce the number of crashes involving emergency vehicles and associated litigation costs while improving medical outcomes, reducing property damage, and instilling greater public confidence in emergency services. At the same time, non-emergency vehicles will also be offered increased safety and, with the reduction of long delays attributed to emergency vehicles, experience reduced incident-related travel time, which will increase productivity and quality of life for drivers. Incorporating connected vehicles into the emergency response system will also provide synergistic opportunities for non-emergency vehicles, including live updates on accident sites, areas to avoid, and information on emergency routes that can be incorporated into navigation software so drivers can avoid potential delays. While the proposed system will naturally advance the quality of transportation in smart cities, it will also provide a platform for future techniques to build upon. For example, the proposed system could be connected with emergency care facilities to balance the load of emergency patients at hospitals, and act as a catalyst toward the realization of a fully-automated emergency response system. New courses and course modules will be developed to recruit and better prepare a future workforce that is well versed in multi-disciplinary collaborations. Video demos and a testbed will be used to showcase the research to the public.
The key research component will be the design of an emergency response system that (1) dynamically determines EV routes, (2) coordinates actions by non-emergency vehicles using connected vehicle technology to efficiently and effectively clear paths for emergency vehicles, (3) is able to adapt to uncertain traffic and network conditions, and (4) is difficult to abuse or compromise. The project will result in (1) algorithms that dynamically select EV routes based on uncertain or limited traffic data, (2) emergency protocols that exploit connected vehicle technology to facilitate emergency vehicles maneuvers, (3) an automation module to assist with decision making and maneuvers, and (4) an infrastructure and vehicle hardening framework that prevents cyber abuse. Experiments will be performed on a testbed and a real test track to validate the proposed research.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
The goal of this project is to facilitate timely retrieval of dynamic situational awareness information from field-deployed nodes by an operational center in resource-constrained uncertain environments, such as those encountered in disaster recovery or search and rescue missions. This is an important cyber physical system problem with perspectives drawn at a system and platform level, as well as at the system of systems level. Technology advances allow the deployment of field nodes capable of returning rich content (e.g., video/images) that can significantly aid rescue and recovery. However, development of techniques for acquisition, processing and extraction of the content that is relevant to the operation under resource constraints poses significant interdisciplinary challenges, which this project will address. The focus of the project will be on the fundamental science behind these tasks, facilitated by validation via both in house experimentation, and field tests orchestrated based on input from domain experts.
In order to realize the vision of this project, a set of algorithms and protocols will be developed to: (a) intelligently activate field sensors and acquire and process the data to extract semantically relevant information; (b) formulate expressive and effective queries that enable the near-real-time retrieval of relevant situational awareness information while adhering to resource constraints; and, (c) impose a network structure that facilitates cost-effective query propagation and response retrieval. The research brings together multiple sub-disciplines in computing sciences including computer vision, data mining, databases and networking, and understanding the scientific principles behind information management with compromised computation/communication resources. The project will have a significant broader impact in the delivery of effective situational awareness in applications like disaster response. The recent :World Disaster Report" states that there were more than 1 million deaths and $1.5 trillion in damage from disasters within the past decade; the research has the potential to drastically reduce these numbers. Other possible applications are law enforcement and environmental monitoring. The project will facilitate a strong inter-disciplinary education program and provide both undergraduate and graduate students experience with experimentation and prototype development. There will be a strong emphasis on engaging the broader community and partnering with programs that target under-represented students and minorities.
Off
University of California-Irvine
-
National Science Foundation
This research addresses the science of Cyber-Physical Systems. In a multi-agent system, each agent is faced with the task of making decisions taking account of the objectives and actions of other agents, as well as the dynamics of the environment. In such a distributed system each agent receives measurements of its environment, and must infer both the state of the world as well as that of the other agents. The intellectual merits of this research are that it develops new efficient techniques for this information processing, which achieve run-time performance using algorithms that have low computational requirements. The project's broader significance and importance are that it will provide new mathematical and computational tools for use in many engineering applications, including the power grid, transportation networks, and other multi-agent systems, and will be transitioned to practice through professional activities such as workshops, development of educational material for graduates, undergraduates and teenagers, and outreach to industry.
The underlying mathematical and computation tools for this research are based on new methods for statistical filtering in a dynamic setting. One of the most important techniques for the design of software control systems constructs state estimates which are sufficient statistics for the associated decision problem. However, conventional approaches to sufficient statistics and state estimation do not apply to the multi-agent setting. Recent results have given new sufficient statistics for this setting, and the research develops the theory and algorithms to allow these statistics to be used for multi-agent control of cyber-physical systems.
Off
Stanford University
-
National Science Foundation
Project
CPS: Synergy: Collaborative Research: Fault Tolerant Brain Implantable Cyber-Physical System
Epilepsy is one of the most common neurological disorders, affecting between 0.4% and 1% of the world's population. While seizures can be controlled in approximately two thirds of newly diagnosed patients through the use of one or more antiepileptic drugs (AEDs), the remainder experience seizures even on multiple medications. The primary impacts of the chronic condition of epilepsy on a patient are a lower quality of life, loss of productivity, comorbidities, and increased risk of death. Epilepsy is an intermittent brain disorder, and in localization-related epilepsy, which is the most common form of epilepsy, one or a few discrete brain areas (the seizure focus or seizure foci) are believed to be responsible for seizure initiation. More recent approaches with implantable electrical stimulation seizure control devices hold value as a therapeutic option for the control of seizures. These devices, directly or indirectly, target the seizure focus and seek to control its expression. In this project we will build a multichannel brain implantable device based on emerging cyber physical system (CPS) principles. This brain implantable CPS device will incorporate key design features to make the device dependable, scalable, composable, certifiable, and interoperable. The device will operate over the life of an animal, or a patient, and continuously record brain activity and stimulate the brain when seizure related activity is detected to abort an impending seizure.
Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. The goal of this project is to create a second generation brain-implantable sensing and stimulating device (BISSD) based on emerging CPS principles and practice. The development of a BISSD as a exemplifies several defining aspects that inform and illustrate core CPS principles. First, to meet the important challenge of regulatory approval a composable, scalable and certifiable framework that supports testing in multiple species is proposed. Second, a BISSD must be wholly integrated with the patient and fully cognizant at every instant of brain state, including dynamic changes in both the normal and abnormal expression of brain physiology and therapeutic intervention. Thus, this project seeks a tight conjunction of the cyber solution that must monitor itself and monitor and stimulate the brain using implanted, adaptable, distributed, and networked electrodes, and the physical system which in this case is the intermittently failing human brain. Third, a BISSD must function for an extensive period of time, up to the life of the patient, because each surgery to place and retrieve a BISSD carries an attendant risk. This requirement necessitates a dependable solution, which this project seeks to reliably achieve through both an understanding of the brain's foreign body response and a unique hierarchical fault-tolerant design. Fourth, an advanced salient approaches to acquire, compress, and analyze sensor signals to achieve real-time monitoring and control of seizures is employed. This project should yield a powerful, scalable CPS framework for robust fault-tolerant implantable medical devices with real-time processing that can grow with advances in sensors, sensing modalities, time-series analysis, real-time computation, control, materials, power and knowledge of underlying biology. The USA has a competitive advantage in the control of seizures in medically refractory epilepsy. In the modern era, epilepsy surgery evolved in the USA in the 1970s and spread from here to other parts of the world. Similarly, the USA enjoys a competitive advantage in BISSDs, and success in this effort will enable the USA to build on and maintain this advantage. In addition to epilepsy, advances made here can be expected to benefit the treatment of other neurological and psychiatric brain disorders.
Off
University of North Carolina at Charlotte
-
National Science Foundation
Michael Fiddy
Ryan Adams
Computation is everywhere. Greeting cards have processors that play songs. Fireworks have processors for precisely timing their detonation. Computers are in engines, monitoring combustion and performance. They are in our homes, hospitals, offices, ovens, planes, trains, and automobiles. These computers, when networked, will form the Internet of Things (IoT). The resulting applications and services have the potential to be even more transformative than the World Wide Web. The security implications are enormous. Internet threats today steal credit cards. Internet threats tomorrow will disable home security systems, flood fields, and disrupt hospitals. The root problem is that these applications consist of software on tiny low-power devices and cloud servers, have difficult networking, and collect sensitive data that deserves strong cryptography, but usually written by developers who have expertise in none of these areas. The goal of the research is to make it possible for two developers to build a complete, secure, Internet of Things applications in three months.
The research focuses on four important principles. The first is "distributed model view controller." A developer writes an application as a distributed pipeline of model-view-controller systems. A model specifies what data the application generates and stores, while a new abstraction called a transform specifies how data moves from one model to another. The second is "embedded-gateway-cloud." A common architecture dominates Internet of Things applications. Embedded devices communicate with a gateway over low-power wireless. The gateway processes data and communicates with cloud systems in the broader Internet. Focusing distributed model view controller on this dominant architecture constrains the problem sufficiently to make problems, such as system security, tractable. The third is "end-to-end security." Data emerges encrypted from embedded devices and can only be decrypted by end user applications. Servers can compute on encrypted data, and many parties can collaboratively compute results without learning the input. Analysis of the data processing pipeline allows the system and runtime to assert and verify security properties of the whole application. The final principle is "software-defined hardware." Because designing new embedded device hardware is time consuming, developers rely on general, overkill solutions and ignore the resulting security implications. The data processing pipeline can be compiled into a prototype hardware design and supporting software as well as test cases, diagnostics, and a debugging methodology for a developer to bring up the new device. These principles are grounded in Ravel, a software framework that the team collaborates on, jointly contributes to, and integrates into their courses and curricula on cyberphysical systems.
Off
University of Michigan at Ann Arbor
-
National Science Foundation
Event
FTC 2016
Future Technologies Conference 2016 - FTC 2016
6-7 December 2016 | San Francisco, United States | www.SAIConference.com/FTC2016
Sponsored by HPCC Systems
FTC attracts researchers, scientists and technologists from some of the top companies, universities, research firms and government agencies from around the world. The conference is predicated on the successful conferences by The Science and Information (SAI) Organization that have been held in the UK since 2013.