Hardware architecture and a software framework, where the combination allows software to run.
This Rapid Response Research (RAPID) project is developing technology for ubiquitous event reporting and data gathering on the 2010 oil spill in the Gulf of Mexico and its ecological impacts. Traditional applications for monitoring disasters have relied on specialized, tightly-coupled, and expensive hardware and software platforms to capture, aggregate, and disseminate information on affected areas. We lack science and technology for rapid and dependable integration of computing and communication technology into natural and engineered physical systems, cyber-physical systems (CPS). The tragic Gulf oil spill of 2010 presents both a compelling need to fill this gap in research and a critical opportunity to help in relief efforts by deploying cutting-edge CPS research in the field. In particular, this CPS research is developing a cloud-supported mobile CPS application enabling community members to contribute as citizen scientists through sensor deployments and direct recording of events and ecological impacts of the Gulf oil spill, such as fish and bird kills. The project exploits the availability of smartphones (with sophisticated sensor packages, high-level programming APIs, and multiple network connectivity options) and cloud computing infrastructures that enable collecting and aggregating data from mobile applications. The goal is to develop a scientific basis for managing the quality-of-service (QoS), user coordination, sensor data dissemination, and validation issues that arise in mobile CPS disaster monitoring applications. The research will have many important broader impacts related to the Gulf oil spill disaster relief efforts, including providing help for the affected Gulf communities as they field and evaluate next-generation CPS research and build a sustained capability for capturing large snapshots of the ecological impact of the Gulf oil spill. The resulting environmental data will have lasting value for evaluating the consequences of the spill in multiple research fields, but especially in Marine Biology. The project is collaborating with Gulf area K-12 schools to integrate disaster and ecology monitoring activities into their curricula. The technologies developed (resource optimization techniques, data reporting protocol trade-off analysis, and empirical evaluation of social network coordination strategies for an open data environment) will provide a resource for the CPS research community. It is expected that project results will enable future efforts to create and validate CPS disaster response systems that can scale to hundreds of thousands of users and operate effectively in life-critical situations with scarce network and computing resources.
Off
University of Alabama Tuscaloosa
-
National Science Foundation
Gray, Jeffrey
Submitted by Jeffrey Gray on April 7th, 2011
This Rapid Response Research (RAPID) project is developing technology for ubiquitous event reporting and data gathering on the 2010 oil spill in the Gulf of Mexico and its ecological impacts. Traditional applications for monitoring disasters have relied on specialized, tightly-coupled, and expensive hardware and software platforms to capture, aggregate, and disseminate information on affected areas. We lack science and technology for rapid and dependable integration of computing and communication technology into natural and engineered physical systems, cyber-physical systems (CPS). The tragic Gulf oil spill of 2010 presents both a compelling need to fill this gap in research and a critical opportunity to help in relief efforts by deploying cutting-edge CPS research in the field. In particular, this CPS research is developing a cloud-supported mobile CPS application enabling community members to contribute as citizen scientists through sensor deployments and direct recording of events and ecological impacts of the Gulf oil spill, such as fish and bird kills. The project exploits the availability of smartphones (with sophisticated sensor packages, high-level programming APIs, and multiple network connectivity options) and cloud computing infrastructures that enable collecting and aggregating data from mobile applications. The goal is to develop a scientific basis for managing the quality-of-service (QoS), user coordination, sensor data dissemination, and validation issues that arise in mobile CPS disaster monitoring applications. The research will have many important broader impacts related to the Gulf oil spill disaster relief efforts, including providing help for the affected Gulf communities as they field and evaluate next-generation CPS research and build a sustained capability for capturing large snapshots of the ecological impact of the Gulf oil spill. The resulting environmental data will have lasting value for evaluating the consequences of the spill in multiple research fields, but especially in Marine Biology. The project is collaborating with Gulf area K-12 schools to integrate disaster and ecology monitoring activities into their curricula. The technologies developed (resource optimization techniques, data reporting protocol trade-off analysis, and empirical evaluation of social network coordination strategies for an open data environment) will provide a resource for the CPS research community. It is expected that project results will enable future efforts to create and validate CPS disaster response systems that can scale to hundreds of thousands of users and operate effectively in life-critical situations with scarce network and computing resources.
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
White, Christopher
Submitted by Christopher White on April 7th, 2011
The objective of this research is the design of innovative routing, planning and coordination strategies for robot networks, and their application to oceanography. The approach is organized in three synergistic thrusts: (1) the application of queueing theory and combinatorial techniques to networked robots performing sequential tasks, (2) the design of novel distributed optimization and coordination schemes relying only on asynchronous and asymmetric communication, (3) the design of practical routing and coordination algorithms for the USC Networked Aquatic Platforms. In collaboration with oceanographers and marine biologists, the project aims to design motion, communication and interaction protocols that maximize the amount of scientific information collected by the platforms. This proposal addresses multi-dimensional problems of relevance in Engineering and Computer Science by unifying fundamental concepts from multiple cyberphysical domains (robotics, autonomy, combinatorics, and network science). Our team has expertise in a broad range of scientific disciplines, including control theory and theoretical computer science and their applications to multi-agent systems, robotics and sensor networks. The proposed research will have a positive impact on the emerging technology of autonomous and reliable robotic networks, performing a broad range of environmental monitoring and logistic tasks. Our educational and outreach objectives are manifold and focus on (1) integrating the proposed research themes into undergraduate education and research, e.g., via the existing NSF REU site at the USC Computer Science Department, and (2) mounting a vigorous program of outreach activities, e.g., via a well-developed collaboration with the UCSB Center for Science and Engineering Partnerships.
Off
University of California-Santa Barbara
-
National Science Foundation
Bullo, Francesco
Francesco Bullo Submitted by Francesco Bullo on April 7th, 2011
The objective of this research is to develop methods and tools for a multimodal and multi-sensor assessment and rehabilitation game system called CPLAY for children with Cerebral Palsy (CP). CPLAY collects and processes multiple types of stimulation and performance data while a child is playing. Its core has a touch-screen programmable game that has various metrics to measure delay of response, score, stamina/duration, accuracy of motor/hand motion. Optional devices attached to extend CPLAY versions provide additional parallel measurements of level of concentration/participation/engagement that quantify rehabilitation activity. The approach is to model the process as a cyber-physical system (CPS) feedback loop whereby data collected from various physical 3D devices (including fNIR brain imaging) are processed into hierarchical events of low-to-high semantic meaning that impact/ adjust treatment decisions. Intellectual Merit: The project will produce groundbreaking algorithms for event identification with a multi-level data to knowledge feedback loop approach. New machine learning, computer vision, data mining, multimodal data fusion, device integration and event-driven algorithms will lead towards a new type of cyber- physical rehabilitation science for neurological disorders. It will deliver fundamental advancements to engineering by showing how to integrate physical devices with a computationally quantitative platform for motor and cognitive skills assessment. Broader Impacts: The project delivers a modular & expandable game system that has huge implications on the future of US healthcare and rehabilitation of chronic neurological disabilities. It brings hope to children with Cerebral Palsy via lower cost and remote rehabilitation alternatives. It brings new directions to human centered computing for intelligent decision-making that supplements evidence-based practices and addresses social and psychological isolation problems.
Off
University of Texas at Arlington
-
National Science Foundation
Makedon, Fillia
Fillia Makedon Submitted by Fillia Makedon on April 7th, 2011
The objective of this research is the design of innovative routing, planning and coordination strategies for robot networks, and their application to oceanography. The approach is organized in three synergistic thrusts: (1) the application of queueing theory and combinatorial techniques to networked robots performing sequential tasks, (2) the design of novel distributed optimization and coordination schemes relying only on asynchronous and asymmetric communication, (3) the design of practical routing and coordination algorithms for the USC Networked Aquatic Platforms. In collaboration with oceanographers and marine biologists, the project aims to design motion, communication and interaction protocols that maximize the amount of scientific information collected by the platforms. This proposal addresses multi-dimensional problems of relevance in Engineering and Computer Science by unifying fundamental concepts from multiple cyberphysical domains (robotics, autonomy, combinatorics, and network science). Our team has expertise in a broad range of scientific disciplines, including control theory and theoretical computer science and their applications to multi-agent systems, robotics and sensor networks. The proposed research will have a positive impact on the emerging technology of autonomous and reliable robotic networks, performing a broad range of environmental monitoring and logistic tasks. Our educational and outreach objectives are manifold and focus on (1) integrating the proposed research themes into undergraduate education and research, e.g., via the existing NSF REU site at the USC Computer Science Department, and (2) mounting a vigorous program of outreach activities, e.g., via a well-developed collaboration with the UCSB Center for Science and Engineering Partnerships.
Off
University of Southern California
-
National Science Foundation
Sukhatme, Gaurav
Gaurav Sukhatme Submitted by Gaurav Sukhatme on April 7th, 2011
The objective of this research is to develop new principles and techniques for adaptive operation in highly dynamic physical environments, using miniaturized, energy-constrained devices. The approach is to use holistic cross-layer solutions that simultaneously address all aspects of the system, from low-level hardware design to higher-level communication and data fusion algorithms to top-level applications. In particular, this work focuses on body area sensor networks as emerging cyber-physical systems. The intellectual merit includes producing new principles regarding how cyber systems must be designed in order to continually adapt and respond to rapidly changing physical environments, sensed data, and application contexts in an energy-efficient manner. New cross-layer technologies will be created that use a holistic bottom-up and top-down design -- from silicon to user and back again. A novel system-on-a-chip hardware platform will be designed and fabricated using three cutting-edge technologies to reduce the cost of communication and computation by several orders of magnitude. The broad impact of this project will enable the wide range of applications and societal benefits promised by body area networks, including improving the quality and reducing the costs of healthcare. The technology will have broad implications for any cyber physical system that uses energy constrained wireless devices. A new seminar series will bring together experts from many fields (including domain experts, such as physicians and healthcare professionals). The key aspects of this work that deal with healthcare have the potential to attract women and minorities to the computer field.
Off
University of Virginia
-
National Science Foundation
Stankovic, John
John Stankovic Submitted by John Stankovic on April 7th, 2011
This project has two closely related objectives. The first is to design and evaluate new Cyber Transportation Systems (CTS) applications for improved traffic safety and traffic operations. The second is to design and develop an integrated traffic-driving-networking simulator. The project takes a multi-disciplinary approach that combines cyber technologies, transportation engineering and human factors. While transportation serves indispensible functions to society, it does have its own negative impacts in terms of accidents, congestion, pollution, and energy consumption. To improve traffic safety, the project will develop and evaluate novel algorithms and protocols for prioritization, delivery and fusion of various warning messages so as to reduce drivers? response time and workload, prevent conflicting warnings, and minimize false alarms. To improve traffic operations, the project will focus on the design of next generation traffic management and control algorithms for both normal and emergency operations (e.g. during inclement weather and evacuation scenarios). Both human performance modeling methods and human subjects? experimental methods will be used to address the human element in this research. As the design and evaluation of CTS applications requires an effective development and testing platform linking the human, transportation and cyber elements, the project will also design and develop a simulator that combines the main features of a traffic simulator, a networking simulator and a driving simulator. The integrated simulator will allow a human driver to control a subject vehicle in a virtual environment with realistic background traffic, which is capable of communicating with the driver and other vehicles with CTS messages. Background traffic will be controlled by a realistic driver model based on our human factors research that accounts for CTS messages? impact on driver behavior. Intellectual Merits: The project explicitly considers human factors in the design and evaluation of CTS safety and operations applications, a topic which has not received adequate attention. Moreover, the proposed integrated simulator represents a first-of-a-kind simulator with unique features that can reduce the design and evaluation costs of new CTS applications. Broader Impacts: The proposed research can improve the safety, efficiency and environmental-friendless of transportation systems, which serve as the very foundation of modern societies and directly affects the quality of life. The integrated simulator will be used as a tool for teenage and elderly driver education and training, and to inspire minority, middle and high school students to pursue careers in math, science, and computer-related fields
Off
SUNY at Buffalo
-
National Science Foundation
Changxu Wu
Qiao, Chunming
Submitted by Chunming Qiao on April 7th, 2011
Tens of thousands of the nation?s bridges are structurally deficient. This project proposes to design a self sustaining, wireless structural monitoring system. The novel low-power Flash FPGA-based hardware platform and the corresponding software architecture offer a radically new approach to CPS design. A soft multi-core platform where software modules that run in parallel will be guaranteed to have dedicated single-threaded soft processor cores enables flexible power management by running only the necessary cores at any given time at the slowest clock rate mandated by the observed/controlled physical phenomena. As bridges tend to vibrate due to wind and dynamic load conditions, we are developing a novel vibration-based energy harvesting device that is capable of automatically adjusting its resonant response in order to capture much more energy than the current techniques can. Moreover, the PIs are developing structural health assessment techniques involving quantitative analysis of signals to determine crack type, location and size. The technology will indicate structural problems before they become critical potentially saving human lives and averting late and extensive repairs. The impact of the vibration harvesting technique and the soft multi-core architecture will go beyond structural monitoring. A separate soft core dedicated to each software component that interacts with the physical world will make CPS more responsive while saving power at the same time. The education plan focuses on outreach toward underrepresented minorities by recruiting such undergraduates to participate in the research. To facilitate the dissemination of our results, all hardware designs and software developed under this project will be open source.
Off
Vanderbilt University
-
National Science Foundation
Volgyesi, Peter
Peter Volgyesi Submitted by Peter Volgyesi on April 7th, 2011
The objective of this research is to discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile micro-robots that self-organize into cooperative configurations. The approach is intrinsically interdisciplinary and organized along four main thrusts: (1) Algorithms for distributed coordination and control under severe power, communication, and mobility constraints. (2) Electronics for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits. (3) Locomotion devices and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions. (4) Integration of the algorithms, electronics, and actuators into a fleet of ant-size micro-robots. No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications. The PIs will adopt a co-design philosophy that promotes cross-disciplinary research and tight collaboration. Networks of ant-sized robots are expected to be useful in disaster relief, manufacturing, warehouse management, and ecological monitoring, as well as in new unforeseen applications. In addition, the new methods and principles proposed here can be transitioned to other highly-distributed and resource-constrained engineering problems, such as air-traffic control systems. This research program will train Ph.D. students with unique skills in the design of hybrid distributed networks and it will involve undergraduate students, particularly underrepresented minorities and women.
Off
University of Maryland College Park
-
National Science Foundation
Elisabeth Smela
Pamela Abshire
Martins, Nuno Miguel
Nuno Martins Submitted by Nuno Martins on April 7th, 2011
This proposed CPS project aims to enable intelligent telesurgery in which a surgeon, or a distributed team of surgeons, can work on tiny regions in the body with minimal access. The University of Washington will expand an existing open surgical robot testbed, and create a robust infrastructure for cyber-physical systems with which to extend traditional real-time control and teleoperation concepts by adding three new interfaces to the system: networking, intelligent robotics, and novel non-linear controllers. Intellectual Merit: This project aims to break new ground beyond teleoperation by adding advanced robotic functions. Equally robust and flexible networking, high-level interfaces, and novel controllers will be added to the existing sytsem. The resulting system will be an open architecture and a substrate upon which many cyber-physical system ideas and algorithms will be tested under realistic conditions. The platforms proven physical robustness will permit rigorous evaluation of results and the open interfaces will encourage collaboration and sharing of results. Broader Impacts: We expect the results to enable new research in multiple ways. First, the collaborators such as Johns Hopkins, U.C. Santa Cruz, and several foreign institutions will be able to remotely connect to new high level interfaces provided by this project. Second, for the first time a robust and completely open surgical telerobot will be available for research so that CPS researchers do not need to be limited to isolated toy problems but instead be able to prototype advanced surgical robotics techniques and evaluate them in realistic contexts including animal procedures.
Off
University of Washington
-
National Science Foundation
Hannaford, Blake
Blake Hannaford Submitted by Blake Hannaford on April 7th, 2011
Subscribe to Platforms