Designing and managing complex engineering projects over their life cycles.
The objective of this research is to develop methods for the operation and design of cyber physical systems in general, and energy efficient buildings in particular. The approach is to use an integrated framework: create models of complex systems from data; then design the associated sensing-communication-computation-control system; and finally create distributed estimation and control algorithms, along with execution platforms to implement these algorithms. A special emphasis is placed on adaptation. In particular, buildings and their environments change with time, as does the way in which buildings are used. The system must be designed to detect and respond to such changes. The proposed research brings together ideas from control theory, dynamical systems, stochastic processes, and embedded systems to address design and operation of complex cyber physical systems that were previously thought to be intractable. These approaches provide qualitative understanding of system behavior, algorithms for control, and their implementation in a networked execution platform. Insights gained by the application of model reduction and adaptation techniques will lead to significant developments in the underlying theory of modeling and control of complex systems. The research is expected to directly impact US industry through the development of integrated software-hardware solutions for smart buildings. Collaborations with United Technologies Research Center are planned to enhance this impact. The techniques developed are expected to apply to other complex cyber-physical systems with uncertain dynamics, such as the electric power grid. The project will enhance engineering education through the introduction of cross-disciplinary courses.
Off
University of Florida
-
National Science Foundation
Alberto Speranzon
Barooah, Prabir
Prabir Barooah Submitted by Prabir Barooah on October 31st, 2011
Effective response and adaptation to the physical world, and rigorous management of such behaviors through programmable computational means, are mandatory features of cyber physical systems (CPS). However, achieving such capabilities across diverse application requirements surpasses the current state of the art in system platforms and tools. Current computational platforms and tools often treat physical properties individually and in isolation from other cyber and physical attributes. They do not adequately support the expression, integration, and enforcement of system properties that span cyber and physical domains. This results in inefficient use of both cyber and physical resources, and in lower system effectiveness overall. This work investigates novel approaches to these important problems, based on modularizing and integrating diverse cyber-physical concerns that cross-cut physical, hardware, instruction set, kernel, library, and application abstractions. The three major thrusts of this research are 1) establishing foundational models for expressing, analyzing, enforcing, and measuring different conjoined cyber-physical properties, 2) conducting a fundamental re-examination of system development tools and platforms to identify how different application concerns that cut across them can be modularized as cyber-physical system aspects, and 3) developing prototype demonstrations of our results to evaluate further those advances in the state of the art in aspect-oriented techniques for CPS, to help assess the feasibility of broader application of the approach. The broader impact of this work will be through dissemination of academic papers, and open platforms and tools that afford unprecedented integration of cyber-physical properties.
Off
Washington University
-
National Science Foundation
Cytron, Ron
Ron Cytron Submitted by Ron Cytron on October 31st, 2011
The objective of this research is to scale up the capabilities of fully autonomous vehicles so that they are capable of operating in mixed-traffic urban environments (e.g., in a city such as Columbus or even New York or Istanbul). Such environments are realistic large-city driving situations involving many other vehicles, mostly human-driven. Moreover, such a car will be in a world where it interacts with other cars, humans, other external effects, and internal and external software modules. This is a prototypical CPS with which we have considerable experience over many years, including participation in the recent DARPA Urban Challenge. Even in the latter case, though, operation to date has been restricted to relatively “clean” environments (such as multi-lane highways and simpler intersections with a few other vehicles). The approach is to integrate multidisciplinary advances in software, sensing and control, and modeling to address current weaknesses in autonomous vehicle design for this complex mixed-traffic urban environment. All work will be done within a defined design-and-verification cycle. Theoretical advances and new models will be evaluated both by large-scale simulations, and by implementation on laboratory robots and road-worthy vehicles driven in real-world situations. The research address significant improvements to current methods and tools to enable a number of formal methods to move from use in limited, controlled environments to use in more complex and realistic environments. The theory, tools, and design methods that are investigated have potential application for a broad class of cyber-physical systems consisting of mobile entities operating in a semi-structured environment. This research has the potential to lead to safer autonomous vehicles and to improve economic competitiveness, the nation's transportation infrastructure, and energy efficiency. The richness of the domain means that expected research contributions can apply not only to autonomous vehicles but, also, to a variety of related cyber-physical systems such as service robots in hospitals and rescue robots used after natural disasters. The experimental research laboratory for the project is used for undergraduate and graduate courses and supports new summer outreach projects for high-school students. Research outcomes are integrated with undergraduate and graduate courses on component-based software.
Off
The Ohio State University
-
National Science Foundation
Paolo Sivilotti
Özgüner, Ümit
Submitted by Theodore Pavlic on August 9th, 2011
The objective of this research is the design of innovative routing, planning and coordination strategies for robot networks, and their application to oceanography. The approach is organized in three synergistic thrusts: (1) the application of queueing theory and combinatorial techniques to networked robots performing sequential tasks, (2) the design of novel distributed optimization and coordination schemes relying only on asynchronous and asymmetric communication, (3) the design of practical routing and coordination algorithms for the USC Networked Aquatic Platforms. In collaboration with oceanographers and marine biologists, the project aims to design motion, communication and interaction protocols that maximize the amount of scientific information collected by the platforms. This proposal addresses multi-dimensional problems of relevance in Engineering and Computer Science by unifying fundamental concepts from multiple cyberphysical domains (robotics, autonomy, combinatorics, and network science). Our team has expertise in a broad range of scientific disciplines, including control theory and theoretical computer science and their applications to multi-agent systems, robotics and sensor networks. The proposed research will have a positive impact on the emerging technology of autonomous and reliable robotic networks, performing a broad range of environmental monitoring and logistic tasks. Our educational and outreach objectives are manifold and focus on (1) integrating the proposed research themes into undergraduate education and research, e.g., via the existing NSF REU site at the USC Computer Science Department, and (2) mounting a vigorous program of outreach activities, e.g., via a well-developed collaboration with the UCSB Center for Science and Engineering Partnerships.
Off
University of California-Santa Barbara
-
National Science Foundation
Bullo, Francesco
Francesco Bullo Submitted by Francesco Bullo on April 7th, 2011
The objective of this research is to understand the loosely coupled networked control systems and to address the scientific and technological challenges that arise in their development and operation. The approach is to (1) develop a mathematical abstraction of the CPS, and an online actuation decision model that takes into account temporal and spatial dependencies among actions; (2) develop algorithms and policies to effectively manage the system and optimize its performance with respect to applications' QoS requirements; and (3) develop an agent-based event-driven framework to facilitate engineers easily monitor, (re)configure and control the system to achieve optimized results. The developed methodologies, algorithms, protocols and frameworks will be evaluated on testbeds and by our collaborating institution. The project provides fundamental understanding of loosely coupled networked control systems and a set of strategies in managing such systems. The components developed under this project enables the use of wireless-sensor-actuator networks for control systems found in a variety of disciplines and benefits waterway systems, air/ground transportation systems, power grid transmission systems, and the sort. The impact of this project is broadened through collaborations with our collaborating institution. This project provides a set of strategies and tools to help them meet the new standards. The inter-disciplinary labs and curriculum development at both undergraduate and graduate level with an emphasis on CPS interdisciplinary applications, theoretical foundations, and CPS implementations prepare our students as future workforce in the area of CPS applications.
Off
Illinois Institute of Technology
-
National Science Foundation
Li, Xiang-Yang
Xiangyang Li Submitted by Xiangyang Li on April 7th, 2011
The objective of this research is the design of innovative routing, planning and coordination strategies for robot networks, and their application to oceanography. The approach is organized in three synergistic thrusts: (1) the application of queueing theory and combinatorial techniques to networked robots performing sequential tasks, (2) the design of novel distributed optimization and coordination schemes relying only on asynchronous and asymmetric communication, (3) the design of practical routing and coordination algorithms for the USC Networked Aquatic Platforms. In collaboration with oceanographers and marine biologists, the project aims to design motion, communication and interaction protocols that maximize the amount of scientific information collected by the platforms. This proposal addresses multi-dimensional problems of relevance in Engineering and Computer Science by unifying fundamental concepts from multiple cyberphysical domains (robotics, autonomy, combinatorics, and network science). Our team has expertise in a broad range of scientific disciplines, including control theory and theoretical computer science and their applications to multi-agent systems, robotics and sensor networks. The proposed research will have a positive impact on the emerging technology of autonomous and reliable robotic networks, performing a broad range of environmental monitoring and logistic tasks. Our educational and outreach objectives are manifold and focus on (1) integrating the proposed research themes into undergraduate education and research, e.g., via the existing NSF REU site at the USC Computer Science Department, and (2) mounting a vigorous program of outreach activities, e.g., via a well-developed collaboration with the UCSB Center for Science and Engineering Partnerships.
Off
University of Southern California
-
National Science Foundation
Sukhatme, Gaurav
Gaurav Sukhatme Submitted by Gaurav Sukhatme on April 7th, 2011
Abstract The objective of this research is to develop advanced distributed monitoring and control systems for civil infrastructure. The approach uses a cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture and abstractions employ reusable middleware services to develop hierarchical structural monitoring and control systems. The intellectual merit of this multi-disciplinary research includes (1) a unified middleware architecture and abstractions for hierarchical sensing and control; (2) a reusable middleware service library for hierarchical structural monitoring and control; (3) customizable time synchronization and synchronized sensing routines; (4) a holistic energy management scheme that maps structural monitoring and control onto a distributed wireless sensor-actuator architecture; (5) dynamic sensor and actuator activation strategies to optimize for the requirements of monitoring, computing, and control; and (6) deployment and empirical validation of structural health monitoring and control systems on representative lab structures and in-service multi-span bridges. While the system constitutes a case study, it will enable the development of general principles that would be applicable to a broad range of engineering cyber-physical systems. This research will result in a reduction in the lifecycle costs and risks related to our civil infrastructure. The multi-disciplinary team will disseminate results throughout the international research community through open-source software and sensor board hardware. Education and outreach activities will be held in conjunction with the Asia-Pacific Summer School in Smart Structures Technology jointly hosted by the US, Japan, China, and Korea.
Off
Purdue University
-
National Science Foundation
Dyke, Shirley
Shirley Dyke Submitted by Shirley Dyke on April 7th, 2011
The objective of this research is to develop a new approach for composition of safety-critical cyber-physical systems from a small code base of verified components and a large code base of unverified commercial off-the-shelf components. The approach is novel in that it does not require generating the entire code base from formal languages, specifications, or models and does not require verification to be applied to all code. Instead, an explicit goal is to accommodate large amounts of legacy code that is typically too complex to verify. The project introduces a set of verified component wrappers around existing unverified code, such that specified global system properties hold. The intellectual merit of the project lies in its innovative approach for managing component interactions. Unexpected interactions are the primary source of failure in cyber-physical systems. A fundamental conceptual challenge is to understand the different interaction spaces of cyber-physical system components and determine a set of trigger conditions when certain interactions must be restricted to prevent failure. The project develops analysis techniques that help understand the different interaction types and provides component wrappers to restrict them when necessary. Broader impact lies in significantly reducing the design and composition effort for the next generation of safety-critical embedded systems. A variety of student projects are being offered to undergraduates and graduate students. The researchers especially encourage women and minorities to participate. Outreach activity, such as hosting K-12 students on school field/science days, further strengthen the educational component. Technology transfer to John Deere is expected.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Tarek Abdelzaher
Tarek Abdelzaher Submitted by Tarek Abdelzaher on April 7th, 2011
The objective of this research is to establish a new development paradigm that enables the effective design, implementation, and certification of medical device cyber-physical systems. The approach is to pursue the following research directions: 1) to support medical device interconnectivity and interoperability with network-enabled control; 2) to apply coordination between medical devices to support emerging clinical scenarios; 3) to ?close the loop? and enable feedback about the condition of the patient to the devices delivering therapy; and 4) to assure safety and effectiveness of interoperating medical devices. The intellectual merits of the project are 1) foundations for rigorous development, which include formalization of clinical scenarios, operational procedures, and architectures of medical device systems, as well as patient and caregiver modeling; 2) high-confidence software development for medical device systems that includes the safe and effective composition of clinical scenarios and devices into a dynamically assembled system; 3) validation and certification of medical device cyber-physical systems; and 4) education of the next-generation of medical device system developers who must be literate in both computational and physical aspects of devices. The broader impacts of the project will be achieved in three ways. Novel design methods and certification techniques will significantly improve patient safety. The introduction of closed-loop scenarios into clinical practice will reduce the burden that caregivers are currently facing and will have the potential of reducing the overall costs of health care. Finally, the educational efforts and outreach activities will increase awareness of careers in the area of medical device systems and help attract women and under-represented minorities to the field.
Off
University of Pennsylvania
-
National Science Foundation
Lee, Insup
Insup Lee Submitted by Insup Lee on April 7th, 2011
The objective of this research is to develop new foundations of composition in heterogeneous systems, to apply these foundations in a new generation of tools for system integration, and to validate the results in experiments using automotive and avionics System-of-Systems experimental platforms. The approach exploits simplification strategies: develop theories, methods, and tools to assist in inter-layer decoupling. The research program has three focus areas: (1) theory of compositionality in heterogeneous systems, (2) tools and tool architectures for system integration, and (3) systems/experimental research. The project develops and deploys theories and methods for inter-layer decoupling that prevent or decrease the formation of intractable system-wide interdependences and maintain compositionality at each layer for carefully selected, essential system properties. Compositionality in tools is sought by exploring semantic foundations for model-based design. Systems/experimental research is conducted in collaboration with General Motors Global R&D (GM) and focuses on electric car platforms. The project is contributing to the cost effective development and deployment of many safety and security-critical cyber-physical systems, ranging from medical devices to transportation, to defense and avionics. The participating institutions seek to complement the conventional curriculum in systems science with one that admits computation as a primary concept. The curriculum changes will be aggressively promoted through a process of workshops and textbook preparation.
Off
Vanderbilt University
-
National Science Foundation
Sztipanovits, Janos
Janos Sztipanovits Submitted by Janos Sztipanovits on April 7th, 2011
Subscribe to Systems Engineering