Applications of CPS technologies that involve communications systems.
Cyber-physical systems (CPS) are characterized by extremely tight integration of and coordination between computational and physical resources. CPS integrate computation, communication, and storage capabilities through systems of systems that must interact with the physical world in real-time at multiple time scales and often at multiple spatial scales. The inherent heterogeneity and the non-deterministic operation of different components in these systems pose new challenges to traditional control, communication, real-time scheduling, and robotics disciplines. In conjunction with the IEEE Real-Time Systems Symposium in 2009 (RTSS 2009), this project helps to support a Ph.D. student forum to discuss (i) the set of interdisciplinary research problems that arise in the context of cyber-physical systems, (ii) novel applications that become possible thanks to the integration of computing, communication, and interaction with the physical world at scale, and (iii) initial system architecture that addresses some of these research problems. The primary goal is to help students (and the real-time community) recognize that cyberphysical systems are different from the over-engineered real-time embedded systems of the past, and to provide a forum by which students can discuss their proposal for addressing the complicated aggregate systems issues that arise in this context. As such, we need to encourage constructive debate on emerging research topics. A secondary goal is to encourage student involvement in new research directions and offer a channel to discuss and reward the most innovative student ideas in this exciting emerging research field. Advisors and students will be welcome to attend the forum, but the focus will be on training and motivating the next generation of researchers.
Off
University of Nebraska-Lincoln
-
National Science Foundation
Stephen Goddard Submitted by Stephen Goddard on January 11th, 2016
Event
INDIN 2016
INDIN 2016 IEEE International Conference on Industrial Informatics Sponsored by: IEEE Industrial Electronics Society and Pprime Institute, Futuroscope-Poitiers, France INDIN2016  is 14th International Conference on Industrial Informatics sponsored by the Industrial Electronics Society of the IEEE. The  premier  conference  series  presenting  the  state  of  the  art  and  future  perspectives  of industrial information  technologies.
Submitted by Anonymous on December 23rd, 2015
This project exploits an early concept of a flexible, low-cost, and drone-carried broadband long-distance communication infrastructure and investigates its capability for immediate smart-city application in emergency response. This effort is to support the Smart Emergency Response System (SERS) cluster to participate in the Global City Teams Challenge. This project will have an immediate impact in firefighting and other smart-city emergency response applications by quickly deploying a broadband communication infrastructure, thus improving the efficiency of first responders and saving lives. This communication infrastructure expands the capability of individual drones and enables broad new multi-drone applications for smart cities and has the potential to create new businesses and job markets. This interdisciplinary project addresses the following technology issues: 1) development of cyber-physical systems (CPS) technology that enables robust long-range drone-to-drone communication infrastructure; 2) practical drone system design and performance evaluation for WiFi provision; and 3) a systematic investigation of its capability to address smart-city emergency response needs, through both analysis and participation in fire-fighting exercises, as a case study. The project team includes an academic institution, technology companies and government planners, each of whom provides complementary expertise and perspectives that are crucial to the success of the project. The project also provides exciting interdisciplinary training opportunities for students and the community to learn CPS technologies and the Global City Teams Challenge efforts.
Off
University of North Texas
-
National Science Foundation
Submitted by Shengli Fu on December 22nd, 2015
This project will result in fundamental physical and algorithmic building blocks of a novel cyber-physical for a two-way communication platform between handlers and working dogs designed to enable accurate training and control in open environments (eg, disaster response, emergency medical intervention). Miniaturized sensor packages will be developed to enable non- or minimally-invasive monitoring of dogs' positions and physiology. Activity recognition algorithms will be developed to blend data from multiple sensors. The algorithms will dynamically determine position and behavior from time series of inertial and physiological measurements. Using contextual information about task performance, the algorithms will provide duty-cycling information to reduce sensor power consumption while increasing sensing specificity. The resulting technologies will be a platform for implementation of communication. Strong interactions among computer science, electrical engineering, and veterinary science support this project. Work at the interface between electrical engineering and computer science will enable increased power efficiency and specificity of sensing in the detectors; work at the interface of electrical engineering and veterinary behavior will enable novel physiological sensing packages to be developed which measure behavioral signals in real time; Project outcomes will enable significant advances in how humans interact with both cyber and physical agents, including getting clearer pictures of behavior through real time physiological monitoring. Students are part of the project and multidisciplinary training will help to provide development of the Cyber-Physical Systems pipeline. Project outreach efforts will include working with middle school children, especially women and under-represented minorities, presentations in public museums that will promote public engagement and appreciation of the contribution of cyber-physical systems to daily lives. The goal of each outreach activity is to encourage both interest and excitement for STEM topics, demonstrating how computer science and engineering can lead to effective and engaging cyber-physical systems.
Off
North Carolina State University
-
National Science Foundation
Submitted by David L. Roberts on December 21st, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
University of Florida
-
National Science Foundation
Submitted by John Harris on December 18th, 2015
This project explores balancing performance considerations and power consumption in cyber-physical systems, through algorithms that switch among different modes of operation (e.g., low-power/high-power, on/off, or mobile/static) in response to environmental conditions. The main theoretical contribution is a computational, hybrid optimal control framework that is connected to a number of relevant target applications where physical modeling, control design, and software architectures all constitute important components. The fundamental research in this program advances state-of-the-art along four different dimensions, namely (1) real-time, hybrid optimal control algorithms for power management, (2) power-management in mobile sensor networks, (3) distributed power-aware architectures for infrastructure management, and (4) power-management in embedded multi-core processors. The expected outcome, which is to enable low-power devices to be deployed in a more effective manner, has implications on a number of application domains, including distributed sensor and communication networks, and intelligent and efficient buildings. The team represents both a research university (Georgia Institute of Technology) and an undergraduate teaching university (York College of Pennsylvania) in order to ensure that the educational components are far-reaching and cut across traditional educational boundaries. The project involves novel, inductive-based learning modules, where graduate students team with undergraduate researchers.
Off
York College of Pennsylvania
-
National Science Foundation
Patrick Martin Submitted by Patrick Martin on December 18th, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
Cornell University
-
National Science Foundation
Eilyan Bitar Submitted by Eilyan Bitar on December 18th, 2015
International Workshop on Model Based System Engineering and PLM (MBSE PLM 2015) Aims and scope This workshop caters to both practitioners and academics, providing a forum to exchange ideas and experiences on technology, methodology, applications, study cases, and practical experiences of MBSE and PLM. It aims at promoting MBSE and PLM in academia and industry.
Submitted by Anonymous on November 10th, 2015
Amy Karns Submitted by Amy Karns on November 10th, 2015
Event
WFCS 2016
12th IEEE World conference on Factory Communication Systems (WFCS 2016) COMMUNICATION in AUTOMATION  Scope: WFCS is the largest IEEE technical event specially dedicated to industrial communication systems. The aim of this conference is to provide a forum for researchers, practitioners and developers to review current trends in this area and to present and discuss new ideas and new research directions. Focus on:
Submitted by Anonymous on September 18th, 2015
Subscribe to Communication